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Abstract 

We present new proofs of cut elimination for intuitionistic and classical sequent calculi. In both 
cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multi- 
sets and termination measures on sequent derivations. This makes them amenable to elegant and 
concise representations in LF, which are given in full detail. 
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1   INTRODUCTION 

1    Introduction 

Gentzen's sequent calculi [Gen35] for intuitionistic and classical logic have been the central tool in 
many proof-theoretical investigations and applications of logic in computer science such as logic 
programming (e.g. [MNPS91]) or automated theorem proving (e.g. [Wal90]). The central property 
of sequent calculi is cut elimination (Gentzen's Hauptsatz) which yields consistency of the logic as a 
corollary. The algorithm for cut elimination may be interpreted computationally, similar to the way 
that normalization for natural deduction may be viewed as functional computation. For the case 
of linear logic, this point was made by Girard [Gir87] and later elaborated by Abramsky [Abr93]; 
see also [Gal93] for a tutorial introduction. 

Many proofs of cut elimination have been given in the literature yet, to our knowledge, none of 
them have been formalized even though this is clearly possible (see, for example, Matthews [Mat94] 
pencil-and-paper analysis of cut elimination for the (V, -■) fragment of classical propositional logic 
in FSo). They are difficult to mechanize for a number of reasons which in combination are quite 
intimidating. Most proofs require tedious data structures (such as multi-sets) and use complex 
termination measures. They also involve global conditions on occurrences of parameters in sequent 
derivations. In this paper we present new proofs of cut elimination for intuitionistic and classical 
sequent calculi and give their representations in the logical framework LF [HHP93] as implemented 
in the Elf system [Pfe91]. Multi-sets are avoided altogether in these proofs, and termination 
measures are replaced by three nested structural inductions. Parameters are treated as variables 
bound in derivations, thus naturally capturing occurrence conditions. Starting point for the proofs 
is Kleene's sequent system G3 [Kle52], which we derive systematically from the point of view that 
a sequent calculus should be a calculus of proof search for natural deductions. It can easily be 
related to Gentzen's original and other sequent calculi. 

The reader interested in structural cut elimination for intuitionistic or classical logic, but not its 
formalization, should be able to follow this paper by ignoring the material regarding its implemen- 
tation. In order to understand and appreciate the representation of the sequent calculus and the 
proof of cut elimination the reader should have a basic knowledge of the representation methodology 
of LF and the Elf meta-language; the interested reader is referred to [HHP93] and [MP91, Pfe91]. 

The remainder of the paper is organized as follows. In Section 2 we introduce a formulation 
of the intuitionistic sequent calculus motivated from natural deduction. In Section 3 we give a 
notation for proof terms that record the structure of the sequent derivation. This is an important 
intermediate step towards the representation of sequents in LF shown in Section 4. The proof of 
admissibility of cut in the intuitionistic sequent calculus and its implementation are the subject 
of Section 5. In Section 6 we extend these results to the classical case. We conclude with an 
assessment and some remarks about future work in Section 7. In Appendices A.l (intuitionistic) 
and A.2 (classical) we give the complete implementations of admissibility of cut in Elf together 
with an automatically generated informal version of each case in the proof. Appendix B gives 
a formulation of cut elimination as a translation from a sequent calculus with cut to a sequent 
calculus without cut. For both, intuitionistic and classical logic, this is a direct corollary of the 
admissibility of cut in the corresponding cut-free system. 
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2    Intuitionistic Sequent Calculus 

Logical frameworks such as hereditary Harrop formulas [MNPS91] and LF [HHP93] are inherently 
biased towards natural deduction because of the strong correspondence between natural deductions 
and the typed A-expressions used for their representation. Finding an elegant encoding of sequents 
and sequent derivations in a logical framework is therefore the first critical issue in an implemen- 
tation of a proof of cut elimination. Felty's representation [Fel89] in AProlog, for example, uses 
lists of hypotheses which is advantageous for search but makes a formal meta-theory prohibitively 
complex. Frameworks based on sequent calculi such as LU [Gir93] or Forum [Mil94] allow direct 
encodings, but they lack a notation for the proof terms that are required to describe cut elimination. 

In this section we develop a formulation of the sequent calculus for intuitionistic logic by tran- 
scribing the process of searching for a natural deduction into an inference system. The proximity 
to natural deduction then allows a high-level encoding of sequent derivations in LF. The resulting 
sequent calculus is basically Kleene's system G3 [Kle52] which he introduced to obtain a simple 
decidability proof for its prepositional fragment. We assume familiarity with natural deduction. 

We consider a complete set of logical connectives and quantifiers so that we do not miss any 
important issues. Atomic formulas p(h, ...,tn) for first-order terms tu ..., tn are denoted by P. 

Formulas   A   ::=   P | Ai A A2 \ Ax D A2 \ A1 V A2 | -A | T | ± | Vs. A \ 3x. A 

The notions of free and bound variable are defined as usual. We identify formulas that differ only 
in the names of their bound variables and write [t/x]A for capture-avoiding substitution of t for x 
in A. We use A, J5, and C to range over formulas. 

The main judgment of natural deduction is derivability of a formula A, written as hi, but 
we follow custom and mostly omit the turnstile in the presentation. In natural deduction the 
meaning of each logical connective or quantifier is given by introduction and elimination rules. The 
introduction rule specifies how to infer a formula with a given principal connective. The elimination 
rule specifies how we may use an assumption with a given principal connective. During search for 
a natural deduction our goal is to deduce C from hypotheses A1,..., An. We may take four kinds 

of actions. 

1. We may solve the goal immediately when a hypothesis A; is equal to C. 

2. We may use an introduction rule to infer C. Each premise yields a new subgoal. 

3. We may apply an elimination rule to a hypothesis A;. Typically, this yields a new subgoal 
with an additional hypothesis. 

4. We may introduce a lemma into the derivation. 

We also observe from the nature of hypothetical reasoning: 

1. The order in which hypotheses are assumed is irrelevant. 

2. Hypotheses may be used arbitrarily often. 

3. Hypothesis need not be used. 
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We abbreviate hypotheses Au..., An by T. Since the order of hypothesis is irrelevant we write 
r = T', A if A occurs in T and V consists of the remaining hypotheses. Note that the same 
hypothesis may occur more than once. 

A sequent T —y C is a judgment representing the goal of deriving C from T. A derivation of 
r —>C represents a trace of a particular successful search, although in this paper we do not show 
the routine extraction of a natural deduction C from a sequent derivation. The proof search actions 
listed above give rise to various inference rules for the sequent calculus. Using our obervations about 
natural deduction we eliminate all structural rules from Gentzen's system by building them into 
each rule. Intuitively, weakening is incorporated into initial sequents and contraction is built into 
each left rule. Exchange remains implicit in the notation T, A. 

Initial Sequents. The goal may be solved immediately when a hypothesis A matches the con- 

clusion. In sequent form: 
 / 
r,A—> A 

Introduction rules are used to reason backwards from the conclusion during search for a natural 
deduction. Consequently, they apply to the formula on the right-hand side of the sequent arrow. 
Dually, elimination rules are used to reason forward from hypotheses and thus apply to a formula 
on the left-hand side of the sequent arrow. Therefore, the sequent rules for each connective can be 
divided into right and left rules. We examine each of the connectives and quantifiers, showing the 
introduction and elimination and corresponding right and left sequent rules. 

Conjunction.    The introduction/right rules are straightforward. 

 Al Aß 
AAB T-+AAB 

For the elimination/left rules we have to remember to keep the hypothesis A AB, since hypotheses 
may be used arbitrarily often in a natural deduction. 

 AEL 
A 

T,AAB:A- 

T,AAB — 
 ALi 

 AER 
B 

T,AAB,B- 
 AL2 

T,AAB — *c 

Implication. The premise of the introduction rule for an implication A D B is a judgment hy- 
pothetical in A labelled u. The hypothesis is discharged at this inference which we indicate by a 
superscript on the instance of the inference rule. In the sequent formulation on the right, we add 
A to T: we have reduced the goal of deriving A D B from T to the goal of deriving B from T and 
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A. 
— u 
A 

T,A—>B 
DR 

B r —>ADB 
oiu 

ADB 

If we have an implication iDßasa hypothesis while deriving C we use it by proving A (from the 
same hypotheses) and then assuming B as additional hypothesis for proving C. 

ADB       A   ^ T,ADB-+A       T,ADB,B—>C 
 DE  —DL 

B T,ADB—+C 

In order to maintain the correspondence to natural deduction it is important to copy the implica- 
tional assumption AD B to both premises, even though it is redundant in the right premise. 

Disjunction.    There are two introduction rules for disjunction in natural deduction and conse- 
quently two right rules for disjunction in the sequent calculus. 

A r —> A 
•VIL Vfix 

AVB r—>AVB 

B   -VIR 
T-*BVR2 

AVB T—+AV B 

The elimination rule for disjunction explicitly refers to a conclusion C and is thus already closer 
to a sequent rule. 

— «i — u2 

A B 
. . T,AVB,A—4C T,AVB,B-+C 

AVB     C C T,AVB-^C 
 VE"1 'W2 

C 

Negation. Negation in intuitionistic natural deduction is usually explained by considering -u4 
as an abbreviation of A D ±. In sequent calculi, on the other hand, it is modeled by an empty 
right-hand side. These do not correspond so we need to find another formulation for negation. The 
goal is to find an introduction rule for ->A that does not require another logical symbol (such as 
_L). We use the idea of a judgment parametric in a propositional variable p to achieve this. For 
the sequent calculus this means that p may not occur in T or A. 

— u 
A 

P 

r,A- 

r —i 

—>p 
 <RP 
► -.A 

 iP'" 
-A 
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The elimination rule is simpler. 

vl       A   „ T,->A —+A 

c r,-.A—>c 

It may not be obvious at first, but the introduction and elimination rule (and also the left and 
right rules) match up precisely. We will see this in the proof of cut-elimination. 

Truth. There is only an introduction rule for T in natural deduction. Correspondingly, we only 
have a right rule in the sequent calculus. 

-TI  TR 
T r—»T 

Falsehood.    Dually, there is only an elimination and corresponding left rule for _L 

cLE        IM—>c 

Universal Quantification.    Universal quantification employs an individual parameter.  In the 
sequent calculus, this means that the parameter a must be new, that is, it may not appear in T or 
Vx A 

[a/x]A r —> [a/x]A 
i-l_i_VP  \/Ra 

\/x.A r —s- Vrc. A 

In the elimination rule we substitute an arbitrary term t for a universally quantified variable x. 
This substitution may need to rename bound variables so that no variable free in t is captured by 
a quantifier in A. 

Vx.A r,Vz. A,[t/x]A—>C 
 VE — —— VL 
[t/x]A Y,VX.A-^C 

In the customary notation for this elimination and right rules, the term t is not uniquely determined 
if x does not occur free in A. In the proof term calculus in Section 3 we make sure that t occurs 
explicitly in order to avoid potential ambiguities. 

Existential Quantification.    The introduction/right rules are straightforward. 

[t/x]A T —> [t/x]A 
^-^-31  3R 
3x.A r —»■ 3x. A 

The apparent complexity of the elimination rule vanishes when viewed in the sequent calculus. 
Once again, a must be a new parameter, that is, it may not occur in T, 3x. A, or C. 

[a/x]A 
T, 3x. A, [a/x]A —► C 

:  3£a 

3x. A C T,3x.A^C 
 3Ea'u 

C 
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Lemma Introduction. Introducing a lemma A during the search for a natural deduction cor- 
responds directly to the cut rule in the sequent calculus: in order to derive C from T we derive A 
and show that with the additional hypothesis A we can derive C. 

T^A       I\A—»C 
— Cut 

r—>c 

The theorem of cut elimination states that every sequent T —>C that is derivable in the system 
with cut, can also be derived in the system without cut. An equivalent, but slightly more convenient 
way of stating this is that cut is admissible in the system without cut, that is, whenever we can 
derive the premisses of this rule without using cut, we can also derive the conclusion without using 
cut. We concentrate our development on admissibility of cut and relegate cut elimination in the 

sense of Gentzen to Appendix B. 
We summarize the rules for the cut-free calculus G3. They are sound and complete in the usual 

sense, which can easily be shown by relating them to Gentzen's sequent calculus or to natural 

deduction (see Theorem 2). 

r,A 

AAB 
— AR 

T,AAB,A-^C 
— ALi 
T,AAB—+C 

r,AAB,B—>C 

T,AAB-^C 
ALi 

T,A^B T,ADB—>A       T,ADB,B—+C 
DR       :— DL 

ADB T,ADB^C 

T->A    .VÄ1 
r-4AV£ r,AV£,A—>C       T,AVB,B—>C 

 VI 

T-^B   -Wfe 

r,ivs-4C 

r —► AW B 

T,A^p r,-v4—>A 
 ,RP        --.L 
T—>->A T,->A —>C 
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T 
■TR 

r,±.—>C 
■±L 

[a/x]A T,Vx.A,[t/x]A—>C 
-\/Ra V£ 

r—+ Vx. A T,Vx.A^C 

[t/x]A T,3x.A,[a/x]A—>C 
■3R        3La 

r—>3x. A T,3x. A—>C 

The principal formula of an inference is either the formula being introduced on the left or the 
right, or the formula occurring on the left and the right in an initial sequent. All other formulas 
are side formulas of the last inference. These notions also apply to individual formula occurrences. 

The system without cut is easily seen to be consistent, since there is no rule with which one 
could infer the sequent —> J_. In terms of natural deduction this means that introducing a lemma 
during search is never necessary: If there is a deduction of C from hypotheses T we can find it 
by using only introduction rules reasoning backwards from C and using only elimination rules 
reasoning forward from the hypothesis T. This yields consistency of natural deduction as an easy 
corollary, since there is no introduction rule for ±. 

Our formulation of the sequent calculus has the following elementary properties. It is not 
important for our main development, but these properties also hold for the system with the cut 
rule. 

Lemma 1 (Elementary Properties of Sequent Calculus) 

1. (Weakening) IfT —>C then T,A —>C. 

2. (Contraction) IfT, A, A —>C then T,A —>C. 

3. (Term Substitution) If T —> C with free individual parameter a then [t/a]T —> [t/a]C for 
any term t. 

4. (Formula Substitution) IfT —v C with free propositional parameter p then [A/p]T —> [A/p]C 
for any formula A. 

Proof: All are immediate by induction over the structure of the derivation of the assumption. In 
all cases the structure of the derivation is not changed—a property made explicit in Lemma 3.   □ 

Now let F ^->- C stand for derivability in Gentzen's sequent calculus LJ without cut (LJ~), but 
augmented with rules for truth and falsehood. We can easily translate between derivations in LJ~ 
and G3 by removing or inserting instances of the structural rules in LJ-. Empty right-hand sides 
as permitted in LJ present only a small complication. 



STRUCTURAL CUT ELIMINATION 

Theorem 2 (Equivalence of G3 and LJ   ) 

1. T ^C iffT^C, and 

2. T —> p for a parameter p that does not occur in TiffT —> . 

Proof: The proof in both directions proceeds by induction over the structure of the given deriva- 
tion. We require weakening and contraction lemmas for G3 (Lemma 1) to model the structural 
rules of weakening and contraction in LJ. a 

At this point we could define the size of a formula A as the number of its connectives and 
quantifiers, the length of a derivation as the number of inference rules it contains, and then prove 
the admissibility of cut in the cut-free system by three nested inductions over the size of the cut 
formula and the lengths of the derivations of T —> A and T, A —>C. However, such a proof is not 
well-suited for implementation. The first difficulty is the implementation of the sequent calculus 
itself and the notions of multi-set it requires. The second difficulty is that most proof checkers or 
theorem provers use structural induction more effectively than proofs with termination measures. 
We will return to both points in the next section. 

3    Proof Terms for the Sequent Calculus 

The sequent rules as given so far do not preserve all the information present in a natural deduction. 
For example, the two different natural deductions of A D {A D A) below are mapped to same sequent 
derivation. 

— u —w 
A                                  A A,A^A 
 Dr                     Dp  DJI 
ADA                           ADA A-^ADA 

■Dlu  ~Dlu  DR 
AD (AD A) AD (A DA) —> AD {AD A) 

In the sequent notation we cannot tell which of the two identical hypotheses was used in the initial 
sequent. If we are only interested in derivability (or truth), then this is tolerable. However, if 
we are interested in the structure of derivations such ambiguities should be resolved. Clearly, for 
many applications in computer science and, of course, also for the proof of cut elimination the 
structure of derivations is of central importance. We therefore endow sequent derivations with 
proof terms that resolve this kind of ambiguity. This is also an important intermediate step toward 
the representation of the rules in LF. 

There are at least three distinct roles that proof terms may play for a sequent calculus, an 
issue recognized by Gallier [Gal93] and Breazu-Tannen et al. [BTKP93]. The most immediate 
perhaps is to annotate sequent derivations with A-terms that represent the natural deductions they 
correspond to. The second is to think of proof terms as expressions in a programming language 
and view a sequent derivation as a typing derivation. The third is to view proof terms as a compact 
notation for sequent derivations from which they may essentially be reconstructed. This view is 
particularly useful for our endeavor, since the representation in a logical framework should also 

have this property. 



3 PROOF TERMS FOR THE SEQUENT CALCULUS 

The first step is to label hypotheses. The second is to record a proof term d on the right of the 
sequent arrow. A sequent then has the form V —>• d : A where T has the form hi'.Ai,...,hn:An. 
We assume that all hypothesis labels in a context are distinct. In order to avoid confusion with 
similar, but subtly different proof term notations in the literature, we systematically introduce 
precisely one new proof term constructor for each inference rule of the sequent calculus and give 
each a descriptive name. Rules that introduce parameters or hypotheses bind variables at the level 
of proof terms—a phenomenon which should be familiar from the Curry-Howard isomorphism. 
The idea of higher-order abstract syntax (here applied to a syntax for proof terms) is to reduce 
all binding operators to one, namely A. This makes it immediately syntactically apparent which 
variables are bound and where. We also indicate the "type" of bound variables: they may bind 
individuals (x:i), formulas (p:o) or hypotheses (h:A). 

T, h:A —> axiom h : A 

T,h:AAB,hi:A—+d:C 
 ! — ALj 

Y—^di-A       T-^d2:B T,h:AAB—► andlx (XhxiA. d) h : C 
 AR 

r-+andr<M2:AA£ T,h:A A B,h2:B ^ d :C 
_ AL2 

T, h:A A B —* andl2 (Xh2:B. d)h:C 

T,h:A—*d:B T,h:AD B —► d1: A       T,h:AD B,h2:B —»■ d2 : C 
DR         : , ,  „,    „   , t,    „ 3L 

r —» impr (Xh:A. d) : AD B T,h:AD B —>• impl d± (Xh2:B. d2)h:C 

T -^d:A 
■VBi 

r—>OTT?d:AvB T,h:AVB,hi:A—*di:C       T,h:Ay B,h2:B —► d2 :C 
V Li 

T^d'-B      -Vfl2 

T, h:AV B-^ orl {Xh^.A. d{) (Xh2:B. d2)h:C 

T —► orr^ d : A V B 

T,h:A^d:p r,h:^A ^d:A 
^Rp         .n ..    ^L 

T —■» notr (Xp:o. Xh:A. d) : -.A I\ h:^A —► notlc dh:C 

truer : T 
■TÄ 

T, h:± —> falsel0 h : C 
■LL 
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d:\alx\A Y,h-Xx.A,hi:[t/x}A—>d:C 
-V£a        —— ■  ,       n,       VL 

forallr {Xa:i. d) : Vx. A V, hXx. A —► foralllt {\hx:[t / x}A. d)h:C 

—+ d : [t/x]A r, /i:3x. A, *n :[a/x]A —» <2: C 
■3Ä                  3£" 

r —► existsrtd : 3x. A T, h:3x. A —> existsl (Aa:z. Ahi:[a/x]A d) h : C 

Cut is not included as a primitive rule of inference, but its proof term (see Appendix B.l) would 
once again only reflect the structure of the derivation. 

T-^d:A       T,h:A—+e:C 
-Cut 

r —>■ cut d (Xh:A. e) :C 

Erasure of the proof terms from a sequent derivation in this calculus yields derivations from 
the rules given in the previous section. The proofs of the following properties are all immediate 
structural inductions. For typographical reasons we often write V :: (J) if V is a derivation of 
judgment J. The notion of substitution into a derivation should be self-explanatory, perhaps with 
the exception of [h1/h2]V, where hx:A and h2:A are hypotheses. Here we mean the result of erasing 
hypothesis h2 on the left-hand side of every sequent occurring in V and substituting hi in every 
place where h2 occurs on the right-hand side of a sequent. This may require renaming some locally 
bound hypotheses to avoid capture of hx. We write (D,h:A) for the result of adding hypothesis 
h:A to every sequent in V, possibly renaming parameters introduced in V so as not to conflict with 

parameters in A. 

Lemma 3 (Basic Properties of Sequent Calculus with Proof Terms)  The intuitionistic se- 
quent calculus with proof terms satisfies the following properties. 

1. (Weakening) If V :: (T —> d : C) then (V, h:A) :: (I\ h:A—¥ d : C) where h is a new label. 

2. (Contraction or Hypothesis Substitution) If V :: (T,hi:A,h2:A —> d : C) then [hi/h2]T> :: 
(T,h1:A-^[h1/h2]d:C). 

3. (Term Substitution) IfV ::{T —Y d : C) is a derivation with free individual parameter a then 

[t/a]D :: {[t/a]T —>■ [t/a]d : [t/a]C). 

4. (Formula Substitution) IfV::(T —> d : C) is a derivation with free formula parameter p 
then [A/p]V :: ([A/p]T —* [A/p]d : [A/p]C). 

5. (Uniqueness) If V :: (T —» d : C) and V :: (T —> d : C) then V = V and C = C (modulo 
variable renaming). 

4    Representing Sequent Derivations in LF 

In this section we briefly summarize the representation of formulas in LF using the idea of higher- 
order abstract syntax and show how the proof terms of the previous section can be converted to 
an adequate encoding of the sequent calculus. Readers interested primarily in the proof of cut 
elimination itself may safely skip this section. 
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For the sake of brevity we show the actual code in Elf [Pfe91], an implementation of LF which 
permits type declarations with implicit quantifiers. Elf also gives an operational interpretation to 
signatures as logic programs which will be of interest later in the implementation of cut elimination. 
First, the representation of formulas. The obvious representation function r-"1 is a compositional 
bijection between canonical (= long ßrj) LF objects of type o (in an appropriate context) and 
formulas (see [HHP93]). An important characteristic of this encoding (and the others we give 
below) is that variables of the object language are mapped to variables of the meta-language. 
Consequently, variables that are bound in the object language must be bound with corresponding 
scope in the meta-language. 

i : type. '/, individuals 
o : type. '/,  formulas 

and   : o -> o -> o. true : o. 
imp   : o -> o -> o. false o. 
or    : o -> o -> o. forall : (i -> o) -> o. 
not   : o -> o. exists (i -> o) -> o. 

As an example, consider the formula 

{Vx. (Ax D B)) D {{3x. Ax) D B). 

Here, A and B are meta-variables, and Ax indicates that A may contain free occurrences of x while 
B may not. In the LF meta-language, this is implemented by an explicit abstraction. Using infix 
notation (which is supported in Elf) the formula above is represented by 

((forall  [x:i]   (A x imp B))  imp  ((exists  [x:i]  A x)  imp B). 

in a context with A:i -> o and B:o. The concrete syntax [x:U] M stands for Xx:U. M in the 
logical framework. 

Before giving the signature for the sequent calculus we state the adequacy theorem since it is a 
useful guide in interpreting the declarations. We use \J'F for derivability in LF under the signature 
consisting of the declarations yet to come. Assume we have a derivation 

V 
hi'.Ai,..., hn:An —> d : C 

with free individual parameters among oi,..., a^ and prepositional parameters among pi,...,pm- 
Its representation rV~l is a canonical object M such that 

ax:i,..., ak:i, pt:o,.. .pm:o, hi±yp rA1~l,..., hn:hyp rA„"1 PF M : cone rC~\ 

where hyp and cone are type families indexed by formulas. We call the representation adequate if 
r-"1 is a bijection between cut-free sequent derivations and such well-typed canonical objects and if 
it is also compositional in sense that 

r[t/a]V^ = [rr/a]rV^, 
r[C/p]V^ = [rC7p]r2>"\        and 

r[hx/h2}V* = [hi/htYW. 
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One observes a strong similarity between the proof terms d and the representing LF objects M. In 
transcribing the proof terms into LF, we mainly have to take care to distinguish between hypotheses 
and conclusions via the type families hyp and cone. We do not give an explicit definition of rV~*— 
the declarations below and their correspondence to proof terms are suggestive so that the diligent 
reader should be able to write it out without any problems. Note that '/. begins a comment that 
extends to the end of the line, that {x:U}V is Elf's concrete syntax for Ux:U. V, and that [x:U]M 
stands for Xx:U. M. Most II-quantifiers are left implicit and are reconstructed by Elf's front end 
in proper dependency order and with their most general types. 

hyp : o -> type. '/• Hypotheses (left) 
cone : o -> type. */. Conclusion (right) 

axiom : (hyp A -> cone A). 

andr : cone A 
-> cone B 
-> cone (A and B) 

impr (hyp A -> cone B) 
-> cone (A imp B) 

andli : (hyp A -> cone C) 
-> (hyp (A and B) -> cone C). 

andl2 : (hyp B -> cone C) 
-> (hyp (A and B) -> cone C). 

impl : cone A 
-> (hyp B -> cone C) 
-> (hyp (A imp B) -> cone C). 

orrl  : cone A 
-> cone (A or B). 

orr2  : cone B 
-> cone (A or B). 

orl  : (hyp A -> cone C) 
-> (hyp B -> cone C) 
-> (hyp (A or B) -> cone C). 

notr : ({p:o} hyp A -> cone p) 
-> cone (not A). 

notl : cone A 
-> (hyp (not A) -> cone C). 

truer : cone (true). 

forallr : ({a:i} cone (A a)) 
-> cone (forall A) 

existsr : {T:i> cone (A T) 
-> cone (exists A) 

falsel : (hyp (false) -> cone C). 

foralll : {T:i} (hyp (A T) -> cone C) 
-> (hyp (forall A) -> cone C). 

existsl : ({a:i} hyp (A a) -> cone C) 
-> (hyp (exists A) -> cone C). 

The encoding satisfies the representation theorem as outlined above. It circumvents many of 
the problems that ordinarily arise in representations of the sequent calculus. Multi-sets are avoided, 
since hypotheses on the left-hand side of the sequent arrow are transported into the LF context. 
Variable naming conditions are encoded through the usual functional representation of parametric 

judgments. 

Theorem 4 (Adequacy of Sequent Representation)   The representation of sequent deriva- 

tions in LF is adequate. 
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Proof: By inductions over the structure of sequent derivations and canonical forms in LF. The 
proof requires Lemma 3. n 

Since the representation is adequate, checking the validity of sequent derivations can be ac- 
complished by type-checking their representations in LF. As an example, consider the following 
cut-free sequent derivation. 

(Vs. (Ax D B)), (3s. Ax),Aa, (Aa D B) —► Aa        (Vs. {Ax D B)), (3s. Ax),Aa, (AaDB),B-^B 

(Vs. (Ax D B)), (3s. Ax), Aa, (Aa 3 B) —> B 
 .—————\jj_, 

(Vs. (Ax D B)), (3s. Ax), Aa —> B 
 3£0 

(Vs. (Ax D 5)), (3s. Ax) —> 5 
 3fl 
(Vs. (,4s D £)) —> ((3s. As) D B) 
 DÄ 
—»■ ((Vs. (Ax D B)) D ((3s. Ax) D B)) 

Its representation in Elf is the following term. 

[A:i -> o]   [B:o] 

(impr  [hlrhyp  (forall  [x:i]  A x imp B)] 
(impr  [h2:hyp (exists  [x:i] A x)] 

(existsl  ([a:i]   Ch3:hyp  (A a)] 
foralll a ([h4:hyp  (A a imp B)] 

impl  (axiom h3) 
(Ch5:hyp B]  axiom h5) 
h4) 

hi) 
A2))) 

Note that the values of variables that were implicitly quantified in the constant declarations are 
not explicitly supplied here, but reconstructed by Elf's front end. 

5    Admissibility of Cut 

The proof of cut elimination uses one principal lemma: the admissibility of cut in the cut-free 
system. From this, cut elimination follows by a simple structural induction (see Appendix B). 

Theorem 5 (Admissibility of Cut) Let V :: (T —► d : A) and £ :: (T, h:A —> e : C) be 
cut-free sequent derivations. Then there exists a proof term f and a cut-free sequent derivation 
T::(T-+f:C). 

Proof: The proof proceeds by three nested structural inductions on A, d, and e. In other words, 
we may use the induction hypothesis for (immediate) subformulas of A and arbitrary d and e, or 
for A, a subterm of d and arbitrary e, and for A, d, and a subterm of e. We distinguish cases 
for V and £, which is the same as distinguishing cases for the proof terms d and e, since they 
determine the derivation (Lemma 3(5)). The proof is constructive so that it describes an algorithm 
that computes a derivation T given the derivations V and £. 
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The cases can be divided into four categories: (1) Either V or £ is initial with A as its principal 
formula, (2) A is the principal formula of the last inference in both V and £, (3) A is a side formula 
of the last inference in V, and (4) A is a side formula of the last inference in £. These classes are 
not mutually exclusive, so the algorithm induced by our proof is non-deterministic. We capture 
this non-determinism as a relation between rA^, rV, rT, and rJ^, which is implemented by a 

type family 

ca  :  {A:o} cone A ->  (hyp A -> cone C)  -> cone C -> type. 

Note that r£n may use the hypothesis A in addition to the ambient hypotheses T which are implicit. 
We show how each case in the proof contributes a declaration to ce. First, the two cases where 
either V or £ is an initial sequent with principal formula A. 

Case: 

V=   r', H:A —y axiom H : A 

and £ :: (T',H:A,h:A —■» e : C) is arbitrary. Here T = T',H:A and d = axiom if. Then we let 

f = [H/h]e and 
[H/h]£ 

T=   T',H:A-+[H/h]e:C . 

The substitution of H for h in £ is represented by applying the function that represents £ to the 
representation of H. This gives the correct representation of the result by compositionality of r-n 

and Lemma 3(2). 

ca_axiom_l  :   ca A  (axiom H)  E  (EH). 

Case: 

 / 
^ —   T, h:A —> axiom h : A 

and V :: (r ^ d : A) is arbitrary. Then we let / = d and T = V. The representation of this case 

is immediate. 

ca_axiom_r  :   ca A D ([h:hyp A]  axiom h) D. 

Next we consider a case where the cut formula A is the principal formula of the last inference 

in both V and £. 

Case: 

£> _ T,hi:Ai—>d2:A2 
DR 

T —> impr (Afti:Ai. d2) : A\ D A2 

and „ 
£x £2 

£=    r,h:A1DA2—+e1:A1 r,/t:AiD A2,h2:A2 —> e2 :C 

T, h:Ai D A2 —> impl ex (\h2:A2. e2) h : C 
DL. 
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Here d = impr (Xhx:Ai. d2) and e = impl ex (Xh2:A2. e2) h. In this case we first need to eliminate 
the remaining copies of Ax D A2 from the hypotheses of Z\ and S2. To this end we apply the 
induction hypothesis with all of V and the subderivation £x to obtain an e[ and £[ such that 

£'t :: (r —y e[ : Ax) By i.h. on Ax D A2, d, and ex 

Similarly, we would like to eliminate the hypothesis h from £2, but €2 has an additional hypothesis 
h2. Thus we must first weaken V to (X>, h2:A2) :: (I\ /i2:A2 —► d : Ax D A2). By Lemma 3(1), this 
does not change the proof term d. We can thus apply the induction hypothesis and obtain 

E2 :: (r, h2:A2 —¥ e'2 : C) By i.h. on Ax D A2, d, and e2 

Now that we have eliminated the additional copies of Ay D A2 we can apply the ordinary step of 
reducing the cut to two new cuts, but both on smaller formulas (Ax and A2). Note that the proof 
terms e[, e2, and d2 involved in these cuts may be much bigger, since they are the result of earlier 
appeals to the induction hypothesis. 

Z>>2 :: (p —► d'2 : A2) By i.h. on Ax, e[, and d2 

jr::(Y —yf:C) By i.h. on A2, d'2, and e'2 

In the Elf representation, each of the four appeals to the induction hypothesis are implemented 
as recursive calls to ca. We use A <- B for B -> A to emphasize the operational reading of this 
declaration as part of a logic program in Elf to perform cut elimination. The backwards arrow 
associates to the left. 

ca_imp     :   ca (Al  imp A2)   (impr D2) 
([h:hyp (Al imp A2)]   impl (El h)   (E2 h) h) F 
<- ca  (Al imp A2)   (impr D2)  El El' 
<-  (-Qi2:hyp A2} 

ca (Al imp A2)   (impr D2) 
([h:hyp  (Al imp A2)]  E2 h h2)   (E2'  h2)) 

<- ca Al El'   D2 D2* 
<- ca A2 D2'  E2'  F. 

The weakening we mentioned above is implemented by the weakening which holds for LF: in the 
second subgoal, D2 slips inside the scope of h2, but it may not actually depend on it. 

Next we show a case where the cut formula A is a side formula of the last inference in £. The 
idea in all cases where the cut formula is a side formula of the last inference R is the same: we appeal 
to the induction hypothesis on the premise(s) and then apply R to the resulting derivation(s). 

Case: 

Si 
£= r,,H:BiAB2,hi:Bi,h:A—>ei:C 

r', H:Bi A B2, h:A —► andli (Xh^.Bi. e{)H:C 
All 

and V :: (r',#:£i A B2 —> d : A) is arbitrary. In this case, T = Y',H:Bi A B2 and e = 
andh {Xhi'.Bi. e{) H. After weakening V (without changing the proof term dl) we "cut" (D,hx:Bi) 
and E\ to obtain 
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£[ :: (r, H-.Bi A B2, h^Bi —»• e'x : C) By i.h. on A, d, ex 

We now obtain T by applying the Alq to £[. 

T_ T',H:Bi*B2,h1:B1—>e'l:C 
r ~   —Ali 

I1', H:Bi A B2 —-» andli (AÄi:ßi. ei) # : C 

Note how explicit abstractions and applications are employed to represent scoping of hypotheses 
in the Elf implementation of this case. 

car.andll:  ca A D  ([h:hyp A]  andll  (El h) H)   (andli El' H) 
<-  ({hl:hyp Bl} ca A D  (Ch:hyp A]  El h hi)   (El5  hi)). 

All the remaining cases (there are 35 altogether) follow similar patterns. They are given in a 
more compact form in Appendix A.l. They require the usual substitution of terms for individual 
parameters in the cases for quantifiers, and formulas for propositional parameters in the case of 
negation. In the quantifier case we need that [t/x]A is a subformula of Vx. A, which can be justified 
by an appropriate structural induction principle for first-order formulas. D 

What does the proof representation we show above achieve? First of all, it is operationally 
adequate, that is, it provides an implementation of an algorithm that eliminates cuts from sequent 
derivations. Execution of the signature above as an Elf program is illustrated through an example 
below. Furthermore, the implementation describes not just any admissibility proof of cut, but 
captures the computational content of the particular, informal constructive proof we presented. 
Clearly, this must remain an informal statement, since our "constructive proof" is not a formal, 
mathematical object. Our implementation is partially verified by the type checker which ensures 
correctness of the result of applying cut to the two given derivations. Here the dependent types 
play a critical role in guaranteeing the validity of all sequent derivations in the signature statically, 
which is the subject of the adequacy theorem (Theorem 4). On the other hand, due to the absence 
of induction principles in LF, parts of the informal argument are not formally verified through the 
type checker. They require an additional argument external to LF which is possible to carry out 
by hand, but exceedingly tedious. Automation of this external check is the subject of ongoing 

research. 
Even if an external checker would verify that the signature represented a proof of admissibility 

of cut, there would still remain the issue if such a check can always be trusted (there may be bugs 
in the implementation, for example). Thus we believe that it is important that we should be able 
to recover informal, mathematical proofs from their formalization in a framework, that is, a proof 
checker should be able to "explain itself". For this particular case study we have implemented a 
program that translates the Elf signature into the critical parts of the informal argument, namely 
the sequences of appeals to the induction hypotheses in each case of the admissibility proof. We 
then inspected each of the 35 cases in the same way we would judge a proof in a paper submitted 
to a journal and verified the correctness of the implementation of the proof in Elf. The complete 
implementation and the informal presentation of each case are given in full detail in Appendix A.l. 
It remains to convince oneself that all cases are covered, which is not difficult since they are 

enumerated systematically. 
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In the remainder of this section, we illustrate how Elf can be used to execute the (constructive) 
proof of the admissibility theorem for cut. The first derivation (called V in the statement of the 
theorem) is 

-/ 
Ox. (AxV Bx)),(AaV Ba),Aa —> Aa Ox. (AxV Bx)),(AaV Ba),Ba —> Ba 
^       ^ OR  ■ --3H 

Ox. (Ax V Bx)),(Aa V Ba), Aa —■> (3a;. Ax) Ox. (Ax V Bx)),(Aa V Ba),Ba —+ Ox. Bx) 
K       y VRi      —Vfi2 

Ox. (AxV Bx)),(AaV Ba),Aa —)■ ((3x. Ax) V (3x. Bx)) Qx. (Ax V Bx)),(Aa V Ba),Ba —■» (Qx. Ax) V (3a:. Bx)) 
 —— _____ —.    ■   '    ■ "' ~~"     ' Vij 

(3a:. (Ax V Bx)),(Aa V Bo) —► ((3a;. Ax) V (3c. Br)) 
 __ 3La 

Ox. (Ax V Bx)) —> ((3a:. Aa:) V (3a;. Bx)) 

which is represented by 

[A:i -> o]   [B:i -> o] 
[hi:hyp  (exists   [x:i]   (A x or B x))] 

(existsl  ([a:i]   [h2:hyp  (A a or B a)] 
(orl  (Ch3:hyp (A a)]   orrl  (existsr a (axiom h3))) 

([h4:hyp  (B a)]  orr2  (existsr a (axiom h4))) 
h2)) 

hi) 

The second derivation (slightly more general than what we need) is 

-/  ■ -/ 

(Äv &),£—* A' (A'\tB'),B'—*B' 
Vß2       Vßi 

(A' V B'), A' —» (B' V A') (A' V B'), B1 —» (B' V A\ 

(A' V B') —> (B' V A') 

which is represented by 

[A':o]   [B':o] 
[h:hyp (A'  or B')] 

(orl ([h2:hyp A'] orr2 (axiom h2)) 
([h3:hyp B'] orrl (axiom h3)) 
h) 

In this second derivation we instantiate the meta-variables A' and B' to 3a;. Ax and 3a;. Bx, 
respectively. To obtain a cut-free derivation of 3x. (Ax V Bx) —► (3a;. Bx) V (3x. Ax) we then 
pose the following query. 

?- {A:i -> o} {B:i -> o} 
{hl:hyp (exists  [x:i]   (A x or B x))} 
ca  ((exists   [x:i]  A x)  or  (exists  [x:i]  B x)) 

(existsl  ([a:i]   [h2:hyp  (A a or B a)] 
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(orl  ([h3:hyp (A a)]  orrl  (existsr a (axiom h3))) 
(Ch4:hyp  (B a)]  orr2  (existsr a (axiom h4))) 
h2)) 

hi) 
([h:hyp  ((exists   [x:i]  A x)  or  (exists  [x:i]  B x))] 

(orl  ([h2:hyp  (exists   [x:i]  A x)]   orr2  (axiom h2)) 
([h3:hyp  (exists   [x:i]  B x)]  orrl  (axiom h3)) 
h)) 

(FAB hi). 

The only free variable in this query is F which may depend on A, B, and the hypothesis hi. The 
first (and in this case only) answer we obtain is the substitution 

F = 
[A:i -> o]   [B:i -> o]   [hl:hyp (exists  [x:i]  A x or B x)] 

existsl 
([a:i]   [h:hyp (A a or B a)] 

orl  ([hll:hyp (A a)]  orr2 (existsr a (axiom hll))) 
([h2:hyp  (B a)]  orrl   (existsr a (axiom h2)))  h)  hi. 

which represents the expected derivation 

■I 
(3x.(AxVBx)),(AaVBa),Aa—+Aa (3x.(AxvBx)),(AaVBa),Ba—*Ba 

■BR  ~~ ~ ~—Z~T3R 

(3x.(AxVBx)),(AaVBa),Aa^-(3x.Ax) (Bx. (Ax V Bx)), (Aa V Ba),Ba —» (3a;. Bx) 
-Vi?2        ~~  "~ —-V/tx 

(3x. (Ax V Bx)), (Aa V Ba), Aa —► ((3a;. Bx) V (3x. Ax)) (3x. (Ax V Bx)),(Aa V Ba),Ba —» ((3x. Bx) V (3x. Ax)) 

(Bx. (Ax V Bx)),(Aa V Ba) —* ((Bx. Bx) V (3*. Ax)) v       x       _^  "2Ln 

(Bx. (Ax V Bx)) —» ((3a;. Bx) V (3a;. Ax)) 

6    Extension to Classical Logic 

In natural deduction we obtain classical logic by adding another inference rule that breaks the 
symmetry of introduction and elimination rules. This rule might be excluded middle, indirect 
proof, or double negation elimination. In sequent calculus, classical logic is usually handled by 
allowing multiple conclusions, that is, a sequent has the form T —)■ A, where both T and A are 
lists (or multi-sets) of formulas. This exhibits deep symmetries in classical logic which are not so 
obvious in natural deduction form. The duality between left and right rules is now perfect, as is the 
duality of conjunction and disjunction, truth and falsehood, universal and existential quantification, 
and the self-duality of negation. Unfortunately, the gap between natural deduction and sequent 
calculus has become wider, so our rules are motivated by an extension of the intuitionistic case to 
multiple conclusions, rather than directly from natural deduction. For the proof of cut elimination 
and our representation it is important that Gentzen's structural rules remain implicit: The principal 
formula of an inference must always be copied to all premises along with all side formulas. 

 1 
T,A^A,A 

VL 
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T,AAB,A —y A 
 ALi 

T—+A,AAB,A       r—>B,AAB,A T,AAB—+A 
 Ai? 

r^AA*'A T,AAB,B->A 
 AL2 
T,AAB —-»■ A 

F,A—>B,AjB,A r,ADJ3—>A,A      F,ADB,B-^A 
 DR  DL 

T—*ADB,A T,ADB-^A 

T—> A,AV5,A 

r-^Avs,A r,AVB,A —»A      r,AVß,ß-+A 

r—+ß,Avß,A 
 ■ — VR2 
r->AV5,A 

r,Avß-4A 
VI 

r,A—>^A,A             r,->A—»A,A 
 .B <L 
r—*^A,A r,-iA —-»A 

■Tfi 
T,A 

■J_L 

r —> [a/z]A, Vz. A, A r, Vs. A, [i/ar]A —► A 
 —— VÄa VL 

r—>Vx. A, A r,Vz. A—>A 

r—>[t/x]A,3x.A,A T,3x.A,[a/x]A—> A 

r—»Bz. A, A T,3x. A—>A 

As in the intuitionistic case, we exclude cut from the system and show that it is admissible. It 
has the form 

r—>A,A     r,A—>-A 
 Cut 

A 

The classical calculus satisfies weakening and contraction on both sides, and also the usual 
substitution properties.   Weakening and contraction do not change the structure of the proof, 
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which is made explicit below in Lemma 6. The equivalence to Gentzen's calculus LK is also easy 
to establish by inserting or removing appropriate structural rules; we skip the routine details here. 

The assignment of proof terms reflects the symmetry between the left- and right-hand sides of 
a sequent in that we label both negative (left-hand side) and positive (right-hand side) formulas 
with variables. A proof term d then annotates the whole sequent; we write it above the sequent 

arrow: 

n\ :A\,..., Uj :Aj —t Pi'-Ci,..., Pk'-Ck- 

We use n {negative) for labels of formulas occurring on the left of the sequent arrow and p (positive) 
for labels of formulas occurring on the right of the sequent arrow. As in the intuitionistic calculus, 
our proof terms faithfully record the structure of the sequent derivation and have no immediate 
connection to computational interpretations. We again use A and the idea of higher-order abstract 

syntax to delimit scope. 

T,n:A    —>yp:A,A 

T,n:AAB,nx:A^ A 
 • AJLI 

, _ andh (\ni:A. di)n 
T^Pl:A,p:AAB,A       T A p2:B,p:A A B, A T,n:AAB —>■ A 
__ ■ — ■ Ait 

randr(\Pl:A.d}l(\p2:B.d2)pp:AAB^A T,n:A A B,n2:B ^ A 
—. AL2 

&ndl2 (\n2:B.d2)n   . 
r,n:AA5 —> A 

T,n1:A-^p2:B,p:ADB,A T, n:ApB^ Pl:A, A       T, n:A P B, n2:B A A ^ 
DR 

r ■^r(Xn1:±XPr.B.ä)Pp:A ^ ^ A ^ ^ -, ß i^l^A. d_^Xn2:B. d2)n A 

T^Pl:A,p:AvB,A 
 —VKi 

r°rTl{X^-dl)pp:AvB,A r, n:A VB.M^A        r, n:A V B, n2:B -A A  ^ 
rf r .,,       orl(\n1:A.d1)(\n2:B.d2)n 

TJ^p2:B,p:AVB,A I\ n:A V B -4 A 
 — Vi?2 
T°"2{Xp-^-d2)pp:AvB,A 

Y,n:A-^p:-iA,A T, n:-^A -U p:A, A 

^^V^Ä"1 r, n^A notr(^- d)n A 
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rtr^pp:T,A 
■TR 

I>:±fa-^4nA 
LL 

r -1> Pl:[a/a;]A,p:Var. A, A I\ n:Vz. A, m :[*/&] A A A 
-VjR

a — VI 
r fondlr(Aa3._^:ta/r]A. «Q p ^  A p^ ^.y^ ^ foralUt (Ar^[t/z]A. d) n A 

d r Api:[i/a;]A,p:3a;. A, A r,n:3z. A, rai:[a/a;]A ^* A 
.3jR  _ 3^a 

p existsrt (Api^/s]/L. d) p ^  A p  ^^ ^ existsl (Aas. \n^.[a/x]A. d) n ^ 

We generalize the various notions of substitution and weakening from the intuitionistic case 
in the obvious way. Substitution for formula parameters is not necessary here, since negation is 
handled in a different way. We then have: 

Lemma 6 (Basic Properties of Classical Sequent Calculus with Proof Terms) The clas- 
sical sequent calculus with proof terms satisfies the following properties. 

1. (Weakening) IfV :: (r -^> A) then (£>, n:A) :: (I\ n:A -U A) and (V,p:A) :: (r A p:A, A), 
where n and p are new labels. 

2. (Contraction) IfV :: (I\ n^.A, n2:A A A) then [n1/n2]V :: (T,ni:A [ni-^]d A).  Further- 

more, ifV :: (r A Pi:A,p2:A, A) then \pi/p2]V :: (r ^-H^ Pl:A, A). 

3. (Term Substitution) IfV :: (r -^ A) is a derivation with free individual parameter a then 

[t/a]V :: ([t/a)TlHd [t/a]A). 

4. (Uniqueness) IfV :: (r -4 A) and 2?' :: (r -^ A) tAcn Z> = 2?'. 

Proof: By simple structural inductions. D 

The LF representation closely models proof terms and is thus also symmetric with respect to 
formulas on the left and right: Both appear in the context of the LF typing judgment. That is, a 

cut-free derivation 
V 

ni:Ai,..., nj-.Aj —> pi'.Ci,..., Pk'Ck 

with free individual parameters among ai,...,am is represented by a term M = rX>"1 such that 

ai:i,. ..,am:i, ni:negrAi"\ ..., nJ:negrA:,"
1,pi:posrCr,..., Pk'pos rCki ^F M : #, 

where neg and pos are type families indexed by formulas, and # is a new type, the type of every 
valid proof term. If we interpreted a sequent calculus as a refutational calculus, # would represent a 
contradiction. Below we show the representation of cut-free sequent derivations as an LF signature 
in the concrete syntax of Elf. 
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#  : type. 
neg  :   o -> type. 
pos  :  o -> type. 

axiom' 

andr' 

impr' 

orrl' 

orr2' 

notr' 

(neg A -> pos A -> #). 

(pos A -> #) 
->  (pos B -> #) 
-> (pos  (A and B) -> #). 

(neg A -> pos B -> #) 
->  (pos  (A imp B)  -> #). 

(pos A -> #) 
->  (pos  (A or B)  -> #). 

(pos B -> #) 
->  (pos   (A or B)  -> #). 

(neg A -> #) 
->  (pos   (not A)  -> #). 

truer'   :   (pos  (true)  -> #). 

forallr'   :   ({a:i} pos  (A a)  -> #) 
->  (pos  (forall A)  -> #). 

existsr'   :   {T:i} (pos  (A T)  -> #) 
->  (pos  (exists A)  -> #). 

andll'   :   (neg A -> #) 
->  (neg  (A and B)  -> #). 

andl2'   :   (neg B -> #) 
-> (neg (A and B) -> #). 

impl'     :   (pos A -> #) 
->  (neg B -> #) 
->  (neg (A imp B)  -> #). 

orl'       :   (neg A -> #) 
->  (neg B -> #) 
-> (neg (A or B) -> #). 

notl'     :   (pos A -> #) 
->  (neg (not A)  -> #). 

falsel'   :   (neg (false)  -> #). 

foralll'   :   {T:i}  (neg  (A T)  -> #) 
->  (neg  (forall A)  -> #). 

existsl'   :   ({a:i} neg  (A a)  -> #) 
->  (neg  (exists A)  -> #). 

The cut rule can be added in a similar style (see Appendix B.2). The representations is adequate 
and compositional, we skip the routine formulation of such a theorem. 

We consider two examples of classical sequent derivations and their representation in Elf. The 
first is the law of excluded middle. 

^(A),A,(A\f^(A)) 

^A),A,(AV^(A)) 
^R 

A,(AV^(A)) 

^(AV^(A)) 

VR2 

VÄi 

Note how multiple conclusions are necessary so that both right rules for disjunction may be applied 
in succession. This derivation is represented by the term 

([A:o]   [p:pos  (A or not A)] 
orrl'   ([pi:pos A] 
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orr2' ([p2:pos (not A)] 
notr' ([nl:neg A] axiom' nl pi) 
p2) 

P) 
P) 

{A:o} pos (A or not A) -> #. 

The following example provides another illustration of the differences between intuitionistic and 

classical reasoning in the sequent calculus. 

n((V*. Ax)),Aa —»■ ->(Aa), Aa, (Vx. Ax), {3x. ^{Ax)) 

-.((Vx. Ax)) —»• ->{Aa),Aa, (Vx. Ax), {3x. -i(Aar)) 
 3_R 

-i((V*. Ax)) —► Aa, (Vx. Ax), (3x. ->(Ax)) 
 Vi?a 

-.((Vx. Ax)) —► (Vx. Ax), (3x. -.(Ac)) 
~->L 

-.((Vx.Ax)) —> (3x. -i(Az)) 

It is represented by the term 

([A:i -> o] 
[n:neg (not (forall [x] A x))] 
[p:pos (exists [x] not (A x))] 
notl'   ([pi:pos (forall  [x]  A x)] 

forallr'   ([a:i]   [p2:pos  (A a)] 
existsr'  a  ([p3:pos  (not  (A a))] 

notr'   (Cni:neg (A a)] 
axiom' ni p2) 

p3) 
P) 

pD 
n) 

{A:i -> o} 
neg  (not  (forall  [x]  A x)) 
-> pos  (exists   [x]  not  (A x)) 
-> #. 

The admissibility of the cut rule for the cut-free calculus is once again the central lemma for 
cut elimination. There are now more cases, since there may be side formulas on the right-hand 
sides of sequents. However, due to the symmetry of the rules, the proof is even more systematic 

than in the intuitionistic case. It also follows by three nested structural inductions. 

Theorem 7 (Classical Admissibility of Cut) Let V :: (r A p:A, A) and £ :: (I\ n:A -^ A) 
be cut-free derivations in the classical sequent calculus G3.   Then there is a proof term f and a 

cut-free sequent derivation of T :: (T —> A). 

Proof: By three nested structural inductions on A, d, and e. D 
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The notion of a cross-cut [Gal93], though without multiplicities, surfaces naturally in this proof: 
Since formulas are never discarded they must be eliminated explicitly from both premises of a cut 
in a "cross-cut" fashion before the essential cut reduction can take place. The implementation of 
the proof is by a type family 

ca'   :  {A:o}  (pos A -> #)  ->  (neg A -> #)  -> # -> type. 

that implements the relation between A, the derivation V, the derivation £ and the resulting 

derivation T. 
We only show the representation of one case in the proof of admissibility here; The complete 

proof representation including an informal version of each case may be found in Appendix A.2. 
The first three appeals to the induction hypothesis below are cross-cuts. 

ca_imp 

pl)> 
n2)) 

ca'"(A imp B)   ([p]   impr'   (Di p)  p)   ([n]   impl'   (El n)   (E2 n)  n)  F 
<- ({pi:pos A> ca5 (A imp B) ([p] impr' (Dl p) p) (Cn] El n pi) (El' 
<- ({n2:neg B> caJ (A imp B) ([p] impr' (Dl p) p) (Cn] E2 n n2) (E2' 
<-  ({nl:neg A} {p2:pos B> 

ca'   (A imp B)   ([p] Dl p nl p2)  (Cn]  impl'   (El n)   (E2 n) n) 
(Dl'  nl p2)) 

<-  ({p2:pos B} ca'  A  ([pi]  El'  pi)   ([nl]  Dl'  nl p2)   (F2 p2)) 
<- ca'  B  (Cp2]  F2 P2)   (Cn2]  E2'  n2)  F. 

7    Conclusion 

We have presented new proofs of cut elimination for intuitionistic and classical sequent calculi. 
The proof in the intuitionistic case is motivated by maintaining a close correspondence between 
proof search for natural deduction and sequent derivations. It is this proximity that permits a 
natural representation of the sequent calculus in LF. Furthermore, we show how the proof of cut 
elimination can be implemented in Elf, although the fact that this implementation models the 
informal argument is still partly an informal property, just like the adequacy of the LF encoding 
of derivations. The proof representation is extremely concise and much shorter than an informal 
proof of the same argument (if all the cases were given, of course). In the two appendices below we 
give the details of the proofs which were obtained via a program that translates the internal form 
of Elf declarations to LaTeX source. This "informalized" version of the proof representation can 
be inspected for correctness like ordinary informal mathematical proofs. 

In order to give the reader a feel for the efficiency of LF representation techniques and the 
Elf implementation I give a brief summary of the development history of the work described here. 
For a long time I had thought that a representation of a cut elimination proof in LF would be 
prohibitively complex—if I were to undertake it, I would use a system like Coq in which tactics 
can be used to automate long chains of trivial reasoning steps; Elf does not provide this sort of 
automation technique. The basic difficulty can be traced to the representation of sequents and 
sequent derivations themselves. It is often informally stated that a sequent calculus may be viewed 
as a calculus of proof search for natural deduction. Once I took this remark literally, it took me 
a day to write out the representation of sequent derivations and the proof of admissibility for the 
intuitionistic calculus in Elf (fortunately, the first approach I tried worked). It took me another 
half day to write out and debug admissibility of cut for the classical sequent calculus. From these 
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I reconstructed and checked the informal arguments by hand, which took me another couple of 
days. The combined sources of representations and proofs for intuitionistic and classical case are 
739 lines of Elf code (with only a few comments, but without white-space compression). Type- 
checking the proof takes about 2 sees on a Dec Alpha. Writing the program which generates the 
informal version of the proof from its formalization took about 2 weeks, with several false starts 
(this involved programming in Elf, Emacs Lisp, and LaTeX). 

Another analysis of cut elimination for a small propositional fragment of classical logic is given 
by Matthews [Mat94] in FSo. His proof is traditional—sequents are represented as lists, and termi- 
nation is proved by induction on a standard complexity measure. It has not yet been implemented, 
but it is clear from the sketched development that it would require much time and effort just to 
prove basic properties of sequent derivations, their lengths, etc. For the predicate calculus this 
overhead would be even higher, since a theory binding would have to be developed first. 

Once the structural proof of admissibility has been found and implemented, it is natural to 
ask if it can also be encoded in stronger frameworks such as Coq [DFH+93] so that structural 
inductions are made explicit and the proof is fully formally verified. There are several aspects of 
our proof which make this difficult. The first is the use of higher-order abstract syntax, which 
is not available in a similarly straightforward fashion in other candidate environments. Thus one 
either has to try ideas from [DH94] (which we have not attempted) or use an encoding such as 
de Bruijn indices and explicitly represent contexts. In either case one has to prove a number of 
auxiliary lemmas regarding substitutions which are not needed in our representation. The second 
difficulty arises from the non-deterministic nature of the cut elimination algorithm contained in 
the proof. Making it deterministic in the form of a primitive recursion (which would be required 
for a functional framework) would lead to an explosion in the number of cases that would have to 
be considered. It appears the only way to avoid at least some of this combinatorial explosion is to 
introduce termination measures after all, which requires a new sequence of lemmas regarding sizes 
of formulas and derivations. We conclude that a similarly elegant representation of cut elimination 
in other systems is a non-trivial challenge which, we hope, others will take up. 

In future work we plan to verify mechanically that the given signatures indeed implement proofs. 
The prototype implementation of the schema-checker sketched in [Roh94] currently accepts them, 
but the (meta-meta-)theoretical analysis of schema-checker itself is not yet complete. In other 
future work we plan to reexamine the connection between normalization and cut elimination (see, 
for example, [Zuc74]) in the same framework. Another direction is to study cut elimination in a 
formulation as a higher-order rewrite system along the lines of Nipkow [Nip91], but using dependent 
types. We first note that our system of rules is terminating (note that we cannot permute adjacent 
cuts!). Assuming the completeness of a critical pair criterion for the dependently typed calculus, the 
system is confluent modulo Kleene's permutations of adjacent inference rules in the cut-free system. 
This means that our cut conversions do not identify intuitively unrelated sequent derivations, which 
has been a problem in other systems as noted by Lafont (see [Gal93]). 

Finally, we have a formulation of a sequent calculus for classical linear logic based on the ideas 
in this paper. There is a combinatorial explosion of cases (and we have not checked all of them), 
but we conjecture that a structural proof of cut-elimination is still possible. To represent such a 
proof concisely would require a linear framework, which is the subject of other current research. 
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A    Detailed Admissibility Proofs for Cut 

In this appendix we give the details of the admissibility of cut for intuitionistic and classical sequent 
calculi. For each case in the two proofs we show the formalization as an Elf declaration, followed 
by an automatically generated informal rendering of the case. In order to make the informal proof 
cases more readable we omit explicit proof terms. This means that appeals to weakening and 
contraction lemmas are not visible (see the implicit contraction in the first case, for example). We 
apologize for the unintuitive naming of variables. Variable names are chosen by Elf during type 
reconstruction and printing, and our naming heuristics are currently too simplistic. 

Substitution for individual and propositional parameters arises in the admissibility proof for 
cut in a few cases. When a formula or derivation may depend on a variable x or parameter a we 
indicate this, for example, by writing Ax or Va. Instead of [t/x]A or [t/a]V we then write At or 
Vt for the result of a substitution t for x or a. This is more perspicuous and also closer to the Elf 
implementation and therefore much easier to generate. 

A.l    Intuitionistic Calculus 

A case in the proof of admissibility of cut in the intuitionistic sequent calculus is represented as a 

transformation _ 
V £ T 

T^A <g> T,A^C =► T-+C 

where T may refer to derivations constructed by appeals to the induction hypothesis. These are 
given below the first line (which identifies the case under consideration) in an appropriate order. 
In all cases the decreasing structural component should be apparent; it would have been awkward 
to include this information, since proof terms have been omitted. In the remarks we loosely refer 
to the principal formula or side formula when properly speaking we mean the principal formula 
occurrence or side formula occurrence. We could be pedantic using labelled hypotheses, but only 
at a heavy cost in legibility. 

The relation between V, £, and T is implemented as a type family 

ca  :  {A:o} cone A ->  (hyp A -> cone C)  -> cone C -> type. 

The cases below are divided into the four classes mentioned in the proof of Theorem 5. In analogy 
to other published proofs we call them initial conversions (one of V or £ is initial with the cut 
formula as a principal formula), essential conversions (cut formula is principal in V and £), left 
commutative conversions (cut formula is side formula in V), and right commutative conversions 
(cut formula is side formula in £). 

Initial Conversions. These are the cases in the proof where either V or £ is an initial sequent with 
principal formula being the cut formula A. 

ca_axiom_l  :   ca A  (axiom H)  E  (EH). 

N N 
T,Ai—¥Ai       <g)    T,A1,Al—*A     =*■     T,AX-^A 
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ca_axiom_r  :   ca A D  ([h:hyp A]   axiom h) D. 

N  / N 
T—+A    (g>  r,A—>A       =>     T—+A 

Essential Conversions.   These are the steps in the proof where the cut formula is the principal formula 
of the last inference in both V and S. 

ca_andl  :  ca (Al and A2)   (andr Dl D2) 
([h:hyp (Al and A2)]  andll  (El h)  h) F 
<-  ({hi:hyp Al} 

ca (Al and A2)   (andr Dl D2) 
([h:hyp (Al and A2)]  El h hi)   (El' hi)) 

<- ca Al Dl El'  F. 

N N3 NA 

r—>A! T—+A2 T,{A1AA2),A1-^A 
■AR  : Ali _ ^2 

r—>(yliAA2) <g>        T,{A1AA2)—>A ==>     T-^A 

N Nt 3 

r,^i—>Ai T,A1—+ A2 ^ Ni 
■AR 

T,Ai—>{A1AA2) <g)    T^uiAiAA^—tA     =>     T,Ai—>A 

N Nx N2 

r—*Ai    <g>    T,Ai—>A     =>     T—>A 

ca_and2  :   ca (Al and A2)   (andr Dl D2) 
([h:hyp (Al and A2)]   andl2  (E2 h)  h)  F 
<-  ({h2:hyp A2} 

ca (Al and A2) (andr Dl D2) 
(Ch:hyp (Al and A2)] E2 h h2) (E2' h2)) 

<- ca A2 D2 E2' F. 

N3 N N4 

r—>A2       r—>Ai T,{A2AA1),A1 —>A 
AR  : —AL2 ^ ^ 

Y-+{A2AAX) <g)        r,(A2AAi)—>A =*■     T-+A 

N3 N 
T,AI-^A2       r,^-^    _ ^ Ni 

■AR 
T,A1—^{A2AA1) <g)    T,Ai,(A2AAi)—>A     =>     T,A1—+A 

N Ni N2 

T—>Ai    <g)    r,Ai—>A     =>     T-^A 
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ca_imp    :   ca  (Ai imp A2)   (impr D2) 
(Chrhyp  (Al imp A2)]   impl  (El h)   (E2 h) h)  F 
<- ca  (Al  imp A2)   (impr D2)  El El' 
<-  (-Ch2:hyp A2} 

ca  (Al imp A2)   (impr D2) 
(Ch:hyp  (Al  imp A2)]  E2 h h2)   (E2' h2)) 

<- ca Al El'  D2 D2' 
<- ca A2 D2'  E2'  F. 

JV4 N6 N5 

T,A2—>AX r, (A2 D Ai) —»• A2 T, (A2 D A{], At —»■ A 
DR  ; : ; ^ 

N: 2 

r—>{A2DA1) <g) T,{A2DAl)—>A =>     T—*A 

T,A2—+A1   .DR N6 N3 
T—^{A2DA1) <g>    T,{A2DA1)-^A2     =>     T—4A 2 

N. 4 

r'Al'A2->Al    DR N5 N, 
T,A1—>(A2DA1) <g>   T,A1,{A2DA1)-^A   =>   r,;4i—»4 

N3 N4 N 
T—>A2 <8>   T,A2—+A1   =►   r—+Ai 

N Nx N2 

r—vAi. <g>   r,i4i—>A   =►   r—>-^ 
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ca.orl : ca (Al or A2) (orrl Dl) 
(Di:hyp (Al or A2)] orl (El h) (E2 h) h) F 
<- (-[hi:hyp Al> 

ca (Al or A2)   (orrl Dl) 
(Eh:hyp (Al or A2)] El h hi)   (El' hi)) 

<- ca Al Dl El'  F. 

N N3 N4 

T-^Ax T,(A1VA2),A1-^A T, {Ax V A2), A2 —*• A 
VÄi  VL JV2 N2 

T—>(AiVA2) <g> r, {A1 V A2) —+ A =>     T —> A 

N 
r,Ai—¥Ai N 

T,A1—>{AlVA2) <g>    T,Ai,{A1VA2)—+A     =>•     T,Ai—>A 

N Ni N2 

r—>Ai   <g)   r,i4i—»-A   =►   T-^A 

ca_or2    :   ca (Al or A2)   (orr2 D2) 
(Ch:hyp (Al or A2)]  orl  (El h)   (E2 h) h)  F 
<-  ({h2:hyp A2} 

ca (Al or A2)   (orr2 D2) 
([h:hyp (Al or A2)]  E2 h h2)   (E2' h2)) 

<- ca A2 D2 E2'  F. 

N N4 N3 

r—>i4i T,(A2VA1),A2 —>A Y,{A2\JA1),Al—>A 
VR2  — VI _ ^ N2 

T^(A2VAl) <g) T,{A2VA1)—>A =>     T —»■ A 

N 
r, Ai —> Ai AT 
 WR2 

N3- Ni 
T,A1—^(A2VAi) (g)    T,Ai,(A2VAi)—*A     =*•     T,Ai—*A 

N Ni N2 

r^^i   (g>   T,AI—*A   =»   r—>A 

ca_not     :   ca (not Al)   (notr Dl) 
([h:hyp  (not Al)]  notl  (El h)  h)   (F2 C) 
<- ca  (not Al)   (notr Dl)  El Fl 
<-  ({p:o} ca Al Fl  ([hi:hyp Al]  Dl p hl)   (F2 p)). 
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T,A-+Pl T,-,(A)->A NiAi 
-,#Pi ,L 

{A) <g>  r,-n(i4)—>Ai       =>   r—>Ai 

iVipi 
r;A—>pi 

-./? #3 # 

JV NlP N2p 
r—».A   <g>   r,A—>p   =*•   r—>p 

ca.forall : ca (forall Al) (forallr Dl) 
(Ch:hyp (forall Al)] foralll T (El h) h) F 
<- (-Ch2:hyp (Al T)} 

ca (forall Al) (forallr Dl) 
([h:hyp (forall Al)] El h h2) (El' h2)) 

<- ca (Al T) (Dl T) El' F. 

Na N3 

r—>Aia T,Wx.Aiz),Ait—*A     _ N 

r _». (v*. Aix)        <g>     r, (V*. ^x) —> A =>   r—S-A 

JVa 

T,A!t—>(Vx. Aix) (8)    r,i4it,(Var.i4ix)—>i4     =►     r.^i*—»-^ 

N* iVi ^2 
r—>i4i<   <g>   r.Aii—>A   =>   r—>A 

ca_exists : ca (exists Al) (existsr T Dl) 
(Ch:hyp (exists Al)] existsl (El h) h) F 
<- ({a:i> -Chi:hyp (Al a)} 

ca (exists Al) (existsr T Dl) 
([h:hyp (exists Al)] El h a hi) (El' a hi)) 

<- ca (Al T) Dl (El' T) F. 
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N N3a2 

T—+Ait r,(3x.^ia;),^ia2—+A 
 3R  3£02 N2 

r —> (3*. Axx) (g) r,(3ar.i4iar) —>A =>     T —+ A 

N 
T.Aia—> Ait ,r _r _J_____ 3R N3a Nia 

T,Aia—+(3x.Aix) <g>     r,Aia,(3x.Aix)—+A     =>     T,Aia—+A 

N Nit N2 

Y—+Ait    <g>    T,Ait-+A     =>     T—>A 

Left Commutative Conversions. In these cases the cut formula is a side formula in the deduction 
V :: (r —► A). Note that the deduction V must end in a left rule, since otherwise A would be its principal 
formula. 

cal_andll     :   ca A  (andli Dl H)  E (andli Dl'  H) 
<- -Chl:hyp Bi> ca A  (Dl hi)  E  (Dl'  hi), 

TV N: 2 

T,{AAA3),A—+ A2 Ar T,{AAA3),A—*Ai 
-Ali ^i Ail 

T,{AAA3)—>A2 <g)     T,{AAA3),A2-+Ai     =>       r,(^AA3)—•> Ai 

AT J\rx AT2 

r.fAAAs),^->^2     ®     I\ (A A i43M> ^2 —» >U     =>     T,{AAA3),A-^Ai 

cal_andl2    :   ca A  (andl2 D2 H)  E  (andl2 D2'  H) 
<- {h2:hyp B2} ca A  (D2 h2)  E  (D2'  h2). 

N N2 

T,(A3AA),A—vA2                                     Ar T,{A3AA),A—*Ai 
-AL2 

Nl  ; : AjL2 
T,(A3AA)—>A2 <g)     T,{A3AA),A2—*Ai     =*■       T,{A3AA)-^A1 

N Ni N2 

T,(A3AA),A^A2    (g)    r, {A3 A A), A, A2 —> Ai     =►     r, (A3 A A), A —> Ai 

cal_impl       :   ca A (impl Dl D2 H) E  (impl Dl D2'  H) 
<-   ({h2:hyp B2} ca A  (D2 h2)  E  (D2>  h2)). 
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N3 N 
T,{A3DA)-^A3 T,{A3DA),A-*A2 

 — Di iVl 

T,{A3DA)—±A2 <g>   T,(A3DA),A2—^A1 

N3 N2 

T,(A3DA)-+A3 T,{A3DA),A—+A1 
DL 

N Ni N2 

T,{A3DA),A^A2    <g)    T,{A3DA),A,A2-*Ai     =>     V, (A3 D A), A —»■ Ax 

cal.orl :   ca A  (orl Dl D2 H)  E  (orl Dl' D2'  H) 
<-  ({hi:hyp Bi} ca A  (Di hi) E  (Dl'  hi)) 
<-  ({h2:hyp B2} ca A  (D2 h2)  E  (D2>  h2)). 

N3 N 
T,(A3VA),A3—+A2 r,(A3VA),A—+A2    ^ ^ 

■VL 
T,{A3VA)—+A2 <g>    T,(A3VA),A2—>A1 

N4 N2 

T,{A3VA),A3-^Al T,(A3VA),A-+A1 

r, (A3 V A) —► Ai 
VI 

N3 Ni N4 

Y,{A3VA),A3-^A2 <g)    T,(A3VA),A3,A2 —+ Ax =>     I\ {A3 V A), A3 —+ Ax 

N Ni N2 

T,{A3VA),A^A2 <g>    r,(A3VA),A,A2—>Ai =>     I\ {A3 V A),A —> Ai 

cal.notl : ca A (notl Dl H) E (notl Dl H), 

N ' N 
T,^(A2)—>A2 M T,-^(A2)—>A2 
 ,1 JVi   
r,-.(A2)—J-^!        <g>   r.-^Mi—M   =>•    r,-.(A2)—>4 

cal.falsel : ca A (falsel H) E (falsel H). 
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■LL N  -IL 
T,± —¥Ai <g>    T,±,Ai—+A     =>   T,±—>A 

cal_foralll  :   ca A  (foralll T Dl H)  E  (foralll T Dl' H) 
<-  ({h> ca A  (Dl h)  E (Dl'  h)). 

N N2 

T,(\fx. Ax), At—+ A2 „ T,{Vx.Ax),At—► Ax 

-VL Nl  : VI 
r, (V*. Ax) —» A2 <g)    T,{Vx.Ax),A2-^Ax     =>       r, (Var. Ax) —► Ai 

r,(Vx. Ac),Ai—>A2     <g>     T,(Vx.Ax),At,A2^Ax     =►     r, (Var. Ac),;« —-+ Ax 

cal_existsl  :   ca A  (existsl Dl H)  E  (existsl Dl' H) 
<- ({a:i> -Chrhyp (Bl a)} 

ca A  (Dl ah)  E (Dl'  ah)). 

Nai N2ai 
T,(3x. Ax), Acn—>A2 Ar r,@x.Ax),Aai—>Ai 

r, (3x. Ax) —-»• A2 <g>     T,{3x.Ax),A2 —> Ax     => T, (3x. Ax) —» Ax 

Na Nx N2a 
T,(3x.Ax),Aa—*A2     <g>    T,(3x.Ax),Aa,A2-^Ax     =>     T, {3x. Ax), Aa —s- Ax 

Right Commutative Conversions. In these cases, the formula A in £ :: (T,A —> C) is a side 
formula of the last inference in £. These cases are not necessarily exclusive with the left commutative 
conversions above. There are three classes of subcases: The last inference in £ may be an axiom, a left rule, 
or a right rule. 

car_axiom :   ca A D  ([h:hyp A]   axiom HI)   (axiom HI). 

JV 
r,4—*Ai    <g)  T,A,Ax—>A       =>   T,A—>A 

car_andr : ca A D ([h:hyp A] andr (El h) (E2 h)) (andr El' E2') 
<- ca A D El El' 
<- ca A D E2 E2'. 
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N3                          Ni N4                    N2 

T,Ai—>A2           T,Ai—*A r—+ A2           T —+ A 
N  AR AR 

T—+Ai     ®               T,A1^(A2AA) =►            T —»• (A2 A A) 

N                          N3 N4 

r—4 Ai    <g>   T,Ai—*A2 =>    r—>A2 

N                         Ni N2 

r—>Ai    <g)    T,A1—+A =>    T—+A 

car.andli:   ca A D  (Ch:hyp A]   andll  (El h) H)   (andll El'  H) 
<-  ({hi:hyp Bl> ca A D  ([h:hyp A]  El h hi)   (El' hi)). 

Ni N2 

T,(AAA3),A2,A^Ai T,(AAA3),A-^A1 
N                          . ALi  Ali 

T,(AAA3)—+A2     0       T,(AAA3),A2—+Ai =►       I\ (A A A3) —>• Ai 

N                                             Ni N2 

T,(AAA3),A—+A2    <8>    T,{AAA3),A,A2—>A1 =>     T, (A A A3), A —>• Ax 

car_andl2:   ca A D  ([h:hyp A]   andl2  (E2 h) H)   (andl2 E2'  H) 
<-  ({h2:hyp B2} ca A D  ([h:hyp A]  E2 h h2) (E2'  h2)). 

Nx N2 

T,(A3AA),A2,A —+Ai r, (A3 A A), A—> Ax 
N                          AL2  AL2 

T, {A3 A A) -^A2     0      T,{A3AA),A2—+ At =>       T,(A3AA)—>Ai 

N                                              Ni N2 

T,{A3AA),A—+A2    (8)    T,(A3AA),A,A2—+Ai =>     T,(A3AA),A—+A1 

car_impr  :   ca A D  ([h:hyp A]   impr (E2 h))   (impr E2') 
<-  ({hiihyp Bl> ca A D   ([h:hyp A]  E2 h hl)   (E2'  hi)). 

Ni N2 

T,A2,A—>Ai T,A—*A! 
N  DR  -DR 

T—+A2    (8)   T,A2—->(ADAi) =*•   T—>(ADAI) 

N Ni N2 

T,A—*A2     (8)    T,A,A2—*Ai     =>     T,A—-> Ai 
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car.impl  :   ca A D  ([h:hyp A]   impl  (El h)   (E2 h) H)   (impl El'  E2'  H) 
<- ca A D El El' 
<-  ({h2:hyp B2} ca A D  ([h:hyp A]   E2 h h2)   (E2'  h2)). 

N3 Ni 
T,(A3DÄ),A2-^A3 T,{A3DA),A2,A—>AI 

N  ___ 3L 
r, {A3 D A) —»■ A2    (g) r,(A3OA),A2 —>AX 

N4 N2 

T,{A3DA)-+A3 T,(A3DA),A—>AI 
-DL 

=> r, (A3 DA)-^Ai 

N                                         N3 N4 

T,(A3DA)—+A2     (g>    T,(A3 DA), A2—+A3 =>     r,(A33^^^3 

AT                                                 ./Vi JV2 
r, (A3 DA), A—±A2     (g>     r,(A3DA),A,A2-^Ai =>     r, (A3 D A), A —-»• Ai 

car_orrl  :   ca A D ([h:hyp A]  orrl (El h))   (orrl El') 
<- ca A D El El'. 

Nx                                             N2 
I\Ai—s-A                                T—+A 

N  vÄi  VÄi 
r—>Ai   <g> r,A!-^(AvA2) => r—+ (AVA2) 

N iVi N2 

r—>AX   <g>   r.Ai—>A   =*■   r—+A 

car_orr2 : ca A D (Chrhyp A] orr2 (E2 h)) (orr2 E2') 
<- ca A D E2 E2'. 

iVi N2 

r,Ai—J-A r—*A 
N  VJR2  Vfi2 

r—^-Ai   <8> r.Ai—+(A2VA) => r-^(A2vA) 

N Ni N2 

r-^Ai   <g>   r,Ai—+ A   =>   r—+A 
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car.orl    :   ca A D ([h:hyp A]  orl (El h)   (E2 h) H)   (orl El' E2' H) 
<-  ({hl:hyp Bl} ca A D  ([h:hyp A]  El h hi)   (El' hi)) 
<-  ({h2:hyp B2} ca A D  ([h:hyp A]  E2 h h2)   (E2'  h2)). 

N3 Ni 
T,(A3VA),A2,A3—+A1 T,{A3VA),A2,A—>Ai 

N __ . : VL 
r,(A3vA) —► A2   <g> r,(A3v^),A2—>Ai 

N4 N2 

r,(,43V^),^3-^-4i T,{A3VA),A—^ Al 

T,(A3VA) —*Ai 
VL 

N N3 NA 

T,(A3VA),A3^A2 (g)    T,{A3VA),A3,A2-+A1 =>     T, {A3 V A), A3 —»■ Ay 

N Ni N2 

T,(A3VA),A—>A2 <g>    T,{A3VA),A,A2^A1 =>     I\ {A3 V A), A —> Ax 

car notr  :   ca A D  ([h:hyp A]  notr  (El h))   (notr El') 
<-  ({p:o} {hi:hyp Bl} ca A D  (Ch:hyp A] El h p hl)   (El'  p hi)). 

Nipi N2p\ 
T,Ai,A—yjn T,A—s-pi 

T—>Ai    <g>    T,Ai—>^(A) =>     T—*^{A) 

N                            Nip N2p 
T,A—+Ai     <g)    T,A,A!—^p ==►     T,A—>p 

car_notl   :   ca A D  ([h:hyp A]  notl  (El h) H)   (notl El'  H) 
<-  ca A D El El'. 

TV! N2 

T^{A),Al-^A T,i{A)—*A 
N . ,L 

r,-.(A)—>Ä!    <g>   T,^{A),A1—>A2 =►    r,-(A) —» A2 

N Ni N2 

r,-i(i4)—^^1   <g>   r,-.(i4),i4i—>A   ==>   r,-i{A)—>A 
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car.truer:  ca A D (Ch:hyp A] truer)   (truer), 

N  -pi?  TR 
T—>A    <g)  T,A—>T =►   r—s-T 

car_falsel   :   ca A D  (Ch:hyp A]   falsel H)   (falsel H). 

N  u  ±L 
r,i—>Ai   <g> T,L,At —>A       =*■ T,±—>A 

car_forallr  :   ca A D  ([h:hyp A]  forallr  (El h))   (forallr El') 
<-  ({a:i} ca A D  ([h:hyp A]  Ei h a)   (El'  a)). 

Nidi N2ax 

T,Ai—>Aaj. r—l-Acii 
N  vi?ai  Vüai 

T—tAi     <g>  T,A!—»(V*. Ax) =>   T—±(Vx.Ax) 

N Nia N2a 
r —> Al     (g>    r, Ai —Y Aa     =>     r —> Aa 

car.foralll:   ca A D  ([h:hyp A]  foralll T  (El h) H)   (foralll T El' H) 
<-  (-Chi} ca A D  (Ch:hyp A]  El h hi)   (El'  hi)). 

Ni N2 

T, (Vx. Ax), A2, At —>• Ax r, (Vx. Ax), At —► Ax 
N  VL  VL 

r, (Var. Ax) —*■ A2     <g>       r, (V*. Ax),A2 —> Ax =»        I\ (Vx. Ax) —► ^i 

r,(v*.i4x),^t—+^2   <g>   r,(Vx.Ax),^,^2—>i*i   =>■   r,(Vx.Ax),A<—+Ai 

car_existsr  :   ca A D   ([h:hyp A]  existsr T (El h))   (existsr T El') 
<- ca A D El El'. 



38 STRUCTURAL CUT ELIMINATION 

JVa N2 

T,Ai—>At T—+At 
N  3R -3R 

r —> Ai     <g)  r, Ai —» (3*. Ar) =>   r —)■ (3x. Ac) 

TV Ni N2 

r—>Ai   (g)   r,i4i—>A<   =>   T—+At 

car_existsl  :   ca A D  ([h:hyp A]   existsl  (El h) H)   (existsl El'  H) 
<- ({a:i} -Chi:hyp (Bl a)} 

ca A D ([h:hyp A] El h a hi)   (El'  a hi)). 

Niai N2ai 
T,(3x.Ax),A2,Aai—* A T, {3x. Ax), Aai —>• A 

N  . . 3£«i  3La' 
T, (3x. Ax) —► A2    <g)        r, (3*. Ax), A2 —> Ai => T, (3x. Ax) —► A 

jV -/Via N2C1 

T,{3x.Ax),Aa-^A2    ®    r, (3i. Ax),Aa,A2 —> A     =►     I\ (3*. An), Az —>• A 

A.2    Classical Calculus 

We list the cases using the same conventions as for the intuitionistic calculus above. A transfor- 
mation now has the form 

V € T 
r—>A,A   <g>   r,A—>A   =►   r—+A 

where T may refer to derivations constructed by appeals to the induction hypothesis. This relation 

is implemented by a type family 

ca'   :   {A:o}  (pos A -> #)  ->  (neg A -> #)  -> # -> type. 

Initial Conversions. Here either V or £ is initial with the cut formula A as the principal formula. 
Note that appeals to contraction are implicit since we omit proof terms in this presentation. Recall that 
contraction does not change the structure of the derivation (only the proof term by substituting one formula 
label for another). 

ca_axiom'l  :   ca'  A  ([p]   axiom'  N p)  E  (EN). 

 j N N 
T,A—>A,A      <g)    T,A,A—>A     =>     T,A—*A 

ca_axiom'r  :   ca'  A D   ([n]   axiom' n P)   (D P). 

TV  j N 
T—>A,A,A    <g>  T,A—*A,A      =»     T—>A,A 
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Essential Conversions.   Here the cut formula A is the principal formula of the last inference in both 
V and S. 

ca_andl'   : 
ca'   (A and B)   ([p]  andr'  (Dl p)   (D2 p) p)  ([n]  andll'  (Ei n) n) F 

<-  ({pl:pos A} ca'   (A and B)   ([p]  Dl p pi)   ([n]   andli'   (El n)  n)   (Dl'  pi)) 
<-  ({nirneg A} 

ca'   (A and B)   ([p]  andr'   (Dl p)   (D2 p)  p) 
([n]   El n nl)   (El'  nl)) 

<- ca'  A ([pi] Dl' pi)   (Cnl] El' nl) F. 

N3 N4 N5 

r—>A,(AAAi),A T—tAuiAAA!),* T, (A AAi), A —> A 
■AR  Ali 

r—-> (A A i4i), A <S>       T,(AAAi)—>A 

N2 
r—S-A 

N 5 
T,(AAA1),A^A,A 

N3  Ali N 

r—¥(AAAI),A,A   <g>    r,(4A4)->^A =>   r—>A,A 

N3 N4 

T,A—*A,(AAAi),A T,A—j-Aj, (.4 A^i), A 
AR N* 

T,A—>(AAAi),A <g>    T,A,(AAAi)—>A 

T,A—>A 

N Ni N2 

r—>A,A    <g)    T,A—+ A     =>•     r—>A 
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ca_and2'   : 
ca'   (A and B)   (Cp]   andr'   (Dl p)   (D2 p)  p)   ([n]   andl2'   (E2 n) n)  F 

<-  ({p2:pos B> ca'   (A and B)   (Cp]  D2 p p2)   ([n]   andl2'   (E2 n)  n)   (D2'  p2)) 
<-  (-Cn2:neg B> 

ca'   (A and B)   (Cp]  andr'   (Dl p)   (D2 p)  p) 
(Cn]   E2 n n2)   (E2'  n2)) 

<- ca'  B  (Cp2]  D2'  p2)   (Cn2]  E2'  n2)  F. 

7V3 NA N5 

r-4ii,(4iA4A r—>A,{A!AA),A T, (Ax A A), A —■> A 
.AR . .— Al2 

r^(iiA4A 0    T,(A1AA)^A 

—->A 

N, 5 

r, (Ax A A), A —» A, A 
N4  AL2 ^ 

r->(4A4AA    <g>      T,{A!AA)—>A,A =>     T—>A,A 

N3 NA 

T,A—+ A1,{A1AA),A T,A —> A, (Ai A A), A   _ N 
-AR .     JV5 

r,A—»-(XiAAJ.A <g>    r,A(4AA)-+A 

r,A—>A 

N Nj. N2 

T-^A,A    <g)    T,A—>A    =>    r—>A 



A   DETAILED ADMISSIBILITY PROOFS FOR CUT 41 

ca_imp'   : 
ca'   (A imp B)   ([p]   impr'   (Di p) p)   (Cn]   impl'   (Ei n)   (E2 n)  n)  F 

<- ({pl:pos A} ca' (A imp B) ([p] impr' (Di p) p) (Cn] El n pi) (El' pi)) 
<- «n2:neg B} ca' (A imp B) (Cp] impr' (Di p) p) ([n] E2 n n2) (E2' n2)) 
<-  (-Cni:neg A} {p2:pos B> 

ca'   (A imp B)   (Cp]  DI p nl p2)   ([n]   impl'   (El n)   (E2 n)  n) 
(Di'  ni p2)) 

<-  (-Cp2:pos B} ca'  A  ([pi]  El'  pi)   ([nl]  DI'  nl p2)   (F2 p2)) 
<- ca'  B  ([p2]  F2 p2)   ([n2]  E2'  n2)  F. 

7V5 N6 N7 

T,Al—+A,{A1DA),A T, {Ax D A) —> Au A T,{A1DA),A^A 
■DR  ■ DL 

r^(AiD4A <g> T,(A1DA)—+A 

=>   r—^A 

^5 

 DR ^6 ^3 
T^(A1DA),A1,A <g)    T,{A1DA)—^A1,A     =»     T-^Ai,A 

N5 

 DR N7 Nl 

T,A—*(AiDA),A <g)    T,A,(AiDA)—>A     =>     T,A-^A 

N6 N7 

T,Al,(A1DA)—+AuA,A T,A1,{A1DA),A—>A,A 
N5  — DL 

T,Ai—^(A1DA),A,A    <g> r,Ai,(AiDi4)—>A,A 

N4 

=>     T,A1—^A,A 

N3 Ni N 
r—>AuA,b    <g)    T,A1^A,A     =>     T—+A,A 

N 7VX N2 

r—->A,A   <g>   r,A—>A   =»   r—>A 
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ca_orl'   : 
ca'   (A or B)   ([p]  orrlJ   (Dl p) p)   ([n] orl'   (El n)   (E2 n) n) F 

<- ({nl:neg A> ca'   (A or B)  (Cp]  orrl'   (Dl p) p)   (En]  El n nl)  (El' nl)) 
<-  ({pl:pos A} ca'   (A or B)   (Cp]  Dl p pi)   ([n]  orl'   (El n)   (E2 n)  n) 

(Dl'  pi)) 
<- ca'  A Dl'   Ei'  F. 

r_^A,(AvAi),A T^AVA^A—»A r, (A V A{), Ax —► A 
-VÄ1  — VL 

r—>{AVAi),A <g> T,{AVAi)—*A 

=>    r—S-A 

r,4—>A(^VAi),A 
VR, N4 Ni 

T,A-^{AvAi),A <g>    T,A,{A\/Ai)—>A     =>     T,A—+ A 

iV4 N5 

r,(iVii),yl-^AA r,(i4Vi4i),i4i—»•A.A 
N3 VL 

r—^(AVAO.AA   <g) r,(Avii)-+AA 

TV 
=*•   r—->A,A 

N Nx N2 

r—>A,A   <g>   rM—»A   =*•   r—>A 
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ca_or2'   : 
ca'   (A or B)   (Cp3  orr2'   (D2 p) p)   ([n]   orl'   (El n)   (E2 n)  n) F 

<-  ({n2:neg B} ca'   (A or B) ([p]   orr2'   (D2 p)  p)   ([n]  E2 n n2)   (E2'  n2)) 
<-  (-Cp2:pos B} ca'   (A or B) ([p]  D2 p p2)   ([n]   orl'   (El n)   (E2 n)  n) 

(D2'  p2)) 
<- ca'  B D2'  E2'  F. 

N3 NA N5 

T—>A,{AiVA),&. T,{A1VA),A1 —»A r, {Al V A), A —► A 
-VÄ2  VL 

r-+(AiV^),A <g> r,{A1yA)^^A 

N2 

r—>A 

N3 

r,A—>A,(A!VA),A 
VR2 N5 Nt 

T,A—>(AiVA),A <g)    T,A,(AiVA)—*A     =>     T,A—>A 

NA N5 

T,{A1VA),A1—>A,A T,(A1VA),A—+A,A 
N3  VL 

T-^{A!VA),A,A    <g) T,{AiVA)—>A,A 

N 
=>   r—¥A,A 

N Ni N2 

r—>A,A   <g>   r,A—>A   =^   r—>A 
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ca_not'   : 
ca>   (not A)   ([p] notr'   (Dl p) p)   ([n] notl'  (El n) n) F 

<- ({pl:pos A> ca'   (not A) ([p] notr'   (Dl p) p)   ([nj  El n pi)   (El' pi)) 
<- ({nl:neg A> ca'   (not A) (Cp] Dl p nl)  ([n]  nbtl'   (El n) n)   (Dl' nl)) 
<- ca'  A El'  Dl'  F. 

N3 N4 

TiA—*^(A),A T,^(A)—*A,A 
.-,R  - ,L „ JV2 

r—*^(A),A <g>    r,-(A)—>A =>   r—S-A 

N3 

r-4-(4AA <g>    T,->{A)—>A,A    =>    r^A,A 

N4 

T,A,^(A)-+A,A 
N3 ,L iVl 

T,A—>-*(A),A    <g>       T,A,-.{A)—>A =>     T,A-^A 

N Ni N2 

r—¥A,A   <g>   r,,4—>A   =>   r—J-A 

ca_forall'   : 
ca'   (forall A)   (Cp]  forallr'   (Dl p) p)   ([n]  foralll'  T (El n)  n)  F 

<-  ({nl} ca'   (forall A)   ([p]  forallr'   (Dl p)  p)   ([n]  El n nl)   (El'  nl)) 
<-  ({pi} ca'   (forall A)   (Cp]  Dl p T pi)   ([n]  foralll'  T  (El n) n)   (Dl'  pi)) 
<- ca'   (A T)  Dl'  El'  F. 

N3a N4 

T-^Aa,(Vx.Ax),A     _ I\ (V». Ax), At —► A    ^ N 

T—>(Vx.Ax),A <g)       r, (V*. Ax) —► A =►     T^A 

N3a 
T,At-^Aa,(Vx.Ax),A „ 

T,At—*(yx.Ax),A (g)    T,At,{Vx.Ax)-+A     =>     I\>4t—>A 

iV4 

AT3* _ -VL N 

T^(Vx.Ax),At,A    (g)       T,(yx.Ax)—>At,& =>     T—+At,A 

N Nx N2 
T—>At,A    ®    T,At —»A    =>    r—>A 
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ca_exists'   : 
ca'   (exists A)   (Cp]  existsr' T (Dl p) p)   ([n]  existsl'  (El n) n) F 

<- ({nl> ca'   (exists A)   ([p]  existsr' T (Dl p) p)   ([n]  El n T nl)   (El' ni)) 
<-  «pi} ca'   (exists A)   ([p]  Dl p pi)   ([n]  existsl'   (El n)  n)   (Dl'  pi)) 
<- ca'   (A T) Dl'  El'  F. 

T—*At,(Sx.Ax),A T,(3x. Ax),Aa—+ A 
-3R  3La ^ 

r—>(3x.Ax),A <g)       r, (3x. Ax) —+ A =►     T —■> A 

N3 

T,At-^At,(3x.Ax),A 
 3R N# ^ 

T,At—>(3x.Ax),A <g)    T,At,{3x.Ax) —>• A     =>     T,At—*A 

N4a 
T,(3x.Ax),Aa—>At,A 

N3 -11 '1 3La N 
T—+{3x. Ax), At, A    <g)       T,{3x.Ax)-+At,A =>     T^At,A 

N Ni N2 

T—>At,A    <g)    T,At—>A     =>     r—>A 

Right Commutative Conversions.   Here the cut formula is a side formula of the last inference in £. 

car_axiom'   :   ca'   A D  ([n]   axiom' N P)   (axiom'  N P). 

N  T  T 
r.ili—>i4,i4i,A    <g)  T,Ai,A—>Ai,A       =>   T,Ai—>AUA 
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car_andr'   : 
ca'  AD  ([n]  andr'   (El n)   (E2 n) P)   (andr' F1.F2 P) 

<-  ({plrpos Bl} ca' A D  ([n]  Ei n pi)  (Fl pi)) 
<-  ({p2:pos B2> ca'  AD   ([n]  E2 n p2)   (F2 p2)). 

N3 Nt 
T,A1-^A2,{A2AA),A T, Al —> A, (A2 A A), A 

N  — AR 
r—>Au{A2AA),A    <g) T,A1—^(A2AA),A 

N4 N2 

T—+A2,(A2AA),A T-^A,(A2AA),A 

r—+{A2AA),A 
■AR 

N N3 NA 

T-^Al,A2,(A2AA),A (g)     r,Ai—^2J(^A4A =►     r —»• A2, {A2 A A), A 

N Nx N2 ' 
T—+Al,A,{A2AA),A <g>    r,ii^A(^A4),A =*•     V^A){A2AA),A 

car_andll'   : 
ca'  AD  ([n]   andll'   (El n) N)   (andll'  Fl N) 

<-  ({nl:neg Bl} ca'  A D   ([n]  El n nl)   (Fl nl)). 

Nx N2 

T,[AAA2),Ai,A—>A T, {A A A2),A —» A 
N                              Aii  ALi 

T,(AAA7)—>Ai,A    <g>       r^A^.Ai—>A =*       T,{AAA2) —>A 

N                                               Ni N2 

T,{AAA2),A—*A1,A    ®    r, {A A A2), A, Ai —► A =►     T,{AAA2),A-^A 

car_andl2'   : 
ca'  AD  (W  andl2'   (E2 n)  N)   (andl2'  F2 N) 

<-  ({n2:neg B2} ca'  AD   ([n]   E2 n n2)   (F2 n2)). 

Ni N2 

T,{A2AA),Ai,A-^A T, (A2 A A), A —+ A 
N                           M2  AL2 

T,(A2AA)—>A!,A    0       T,(A2AA),Ai-+A =*•       T,{A2AA)—+A 

N                                                  Ni N2 

T,(A2AA),A-^Ai,A    ®     T,{A2AA),A,Ai—*A ==>     r, [A2 A A), A —> A 
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car_impr'   : 
ca' AD  ([n]   impr'   (El n) P)   (impr' Fl P) 

<- ({nl:neg Bl} {p2:pos B2} 
ca'  AD  ([n]  El n nl p2)   (Fl nl p2)). 

T, A2, A—> At, {AD Ax), A T,A-^AU(ADAI),A 
N  DR  DR 

T-+A2,(ADAl),A    <8> r,i2^(iDii),A => r —>■ (^D^), A 

N Nx N2 

T,A-^A2,A1,(ADA1),A    <8>    r,A,A2—*Au{ADAi),&     =>     r, A —*■ Au {A D Ai), A 

car_impl'   : 
ca'  AD  ([n]   impl' (El n)   (E2 n)  N)   (impl'  Fl F2 N) 

<-  (-Cpl:pos Bl} ca' A D  (En]  El n pi)   (Fl pi)) 
<- (-Cn2:neg B2} ca' AD  (En]  E2 n n2)   (F2 n2)). 

N3 Nx 
r,{A2DA),A!—>A2,A T,(A2DA),A1,A—+A 

N o£ 
T,{A2DA)—>Ai,A    0 T,(A2DA),A1 —¥ A 

N4 N2 

T,(A2DA)^A2,A T,{A7DA),A—>A 

r, (A2 DA)—>A 
DL 

N N3 N4 

T,(A2DA)—*A1,A2,A <g)    T,(A2DA),Ai—>A2,A =>     T, {A2 D A) —» A2, A 

N ATi N2 

T,(A2DA),A—>AUA <8>    T,{A2DA),A,A1 —>A =>     r,(i42Di4),i4—>A 

car_orrl'   : 
ca'  AD  (En]   orrl'   (El n) P)   (orrl'  Fl P) 

<-  (-Cpl:pos Bl> ca'  AD  (En]  El n pi)   (Fl pi)). 

Ni N2 

T,Ai—>A,(AVA2),A r—>A,(AvA2),A 
N  vÄi  VÄi 

r—>AU{AVA2),A    ®      T,Ai—>{AVA2),A =*•       r—>{AVA2),A 

N                                               Ni N2 

T-^AUA,{AVA2),A    (8)    T,Ai-+A,(AvA2),A =►     T —> A, {A V A2), A 
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car_orr2'   : 
ca' AD  ([n]  orr2'   (E2 n) P)   (orr2> F2 P) 

<-  ({p2:pos B2>  ca'  AD   ([n]  E2 n p2)   (F2 p2)). 

T,A1—>A,(A2VA),A T-+A,(A2VA),A 
N Vi?2  : VR2 

T—>Al,(A2VA),A    <g)       T,Ai —+(i2VA),A =>       T—>(A2VA),A 

N                                               Ni N2 

T—^AUA,(A2WA),A    (g)    T,A1—>A,{A2VA),A =>     T-^A,(A2WA),A 

car_orl'   : 
ca'  AD  ([n]  orl'   (El n)   (E2 n) N)   (orl' Fl F2 N) 

<-  (-[nl:neg Bl} ca'  AD  ([n] El n nl)   (Fl nl)) 
<-  (-[n2:neg B2} ca'  AD  ([n] E2 n n2)   (F2 n2)). 

T,(A2VA),AUA2 —-+A T,{A2WA),A1,A-^A 
N  - VL 

T,(A2VA)—+Ai,A    <g> T,(A2VA),A1-+A 

NA N2 

T,(A2VA),A2^A T,(A2VA),A-+A 

T,{A2VA)^A 
VL 

N N3 NA 

T,(A2VA),A2^AltA <g)    Y,(A2VA),A2,A1-+A =►     I\ (A2 V A), A2 —► A 

AT Ni N2 

T,(A2VA),A-^Ai,A <g>    r, (A2 V A), A, Ax —» A =►     r, (A2 V A),A —> A 

car_notr'   : 
ca'  AD   (Cn]  notr'   (El n) P)   (notr'  Fl P) 

<-  (-[nl:neg Bl} ca'  AD  ([n]  El n nl)   (Fl nl)). 

Ni N2 

T,Ai,A^-i{A),A r,A—»i(i4),A 
AT  _ ,R >R 

r—^i4i,-.(i4),A   <8>    r,^i—>-(i4),A =►     r—^-I(A),A 

Ar                                          Ni N2 

T,A—>A!,^(A),A    <g)    T,A,A!-^^(A),A =»     r.A —►-.(A), A 
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car_notl'   : 
ca'  AD   ([n]  notl'   (El n) N)   (notl'  Fl N) 

<-  ({pl:pos Bl} ca'  A D  ([n]  El n pi)   (Fl pi)). 

Ni N2 

I\-.(^Mi-+^A T,^(A)^A,A 
N ,L ,L 

T,^(A)-^A1,A    ®       T,^(A),A1-^A =>       r,n(il)-fA 

N                                         ^ N2 

T,->{A)-^Ai,A,A    <g>    T,-^{A),A1 —*A,A =>     T,->{A)—*A,A 

car_truer'   : 
ca'  AD  ([n]  truer'  P)   (truer' P), 

N ■ TR  TR 
r-»A,T,A    <g>   T,A—>T,A ==>•   r—>T,A 

car_falsel'   : 
ca'  AD  ([n]  falsel' N)   (falsel' N). 

N ■LL  LL 
T,±—*A,A    <g)  T,±,A—»A =>   T,L —>A 

car_forallr'   : 
ca'  AD  (Cn]  forallr'   (El n)  P)   (forallr'  Fl P) 

<- ({a:i} {pl:pos  (Bl a)} 
ca'  A D  ([n]  El n a pi)   (Fl a pi)). 

Niai N2ai 
T,Ai —>Aai,(Vx.Ax),A T—*Aai,(yx.Ax),A 

TV  yRai  Vi?ai 

T —^Au{^x.Ax),A    <g)        T,Ai—+(Vx.Ax),A =► r —»■ (Vx. Ax), A 

N Nia N2a 
T-^Ai,Aa,{Vx.Ax),A    <g)    r, Ai —> Aa, (Vx. Ax), A     =>     T —» Aa, (Vx. Ax), A 

car_foralll' : 
ca'  AD   ([n]  foralll'  T  (El n) N)   (foralll' T Fl N) 

<-  ({nl> ca'  A D  ([n]  El n nl)   (Fl nl)). 
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Ni N2 

r,Wx.Ax),Ai,At—*A T,(Vx.Ax),At—*A 
N                          _ . VL  VL 

T,{Vx.Ax)—>Ai,A    <g>       T,{Vx.Ax),A1—>A =>       I\ (V*. A*) —+ A 

N                                                Ni N2 

r,(Vx.Ax),At—>AltA    <g>    T,(Vx.Ax),At,A1—>A =*■     T,(Vx.Ax),At—> A 

car_existsr'   : 
ca' AD  ([n]  existsr' T (El n) P)   (existsr' T Fl P) 

<- ({pl> ca'  A D ([n]  El n pi)   (Fl pi)). 

Ni N2 

T,A1—+At,(3x.Ax),A T—+At,{3x.Ax),A 
N                          — 3R  3Ä 

T—+Ai,(3x.Ax),A    <g)       T,Ai—>{3x.Ax),A =>       r—>{3x.Ax),A 

N                                                   Nt N2 

T—>AuAt,{3x.Ax),A    <g>    T,A1-^At,(3x.Ax),A =>     T—>At,(3x.Ax),A 

car_existsl'   : 
ca'  AD   ([n]   existsl'   (El n)  N)   (existsl'  Fl N) 

<-  ({a:i} {ni:neg (Bl a)} 
ca'  AD  ([n]  El n a nl)   (Fl a nl)). 

Niai N2ü! 

T, (3x. Ax),Ax,Aai —> A T, (3x. Ax),Aax —> A 
N -11 - 3Lai  3Lai 

T,{3x.Ax)—>Ai,A    ®        T,{3x.Ax),Al-^A => T, (3x. Ax) —> A 

TV Nia N2a 
T,{3x.Ax),Aa—>A1,A    <g)    T,(3x.Ax),Aa,A1-^A     =►     I\ (3x. As), 4a —> A 

Left Commutative Conversions.   Here the cut formula A is a side formula of the last inference in 

V. 

cal.axiom'   :   ca'  A  ([p]   axiom'  N P)  E  (axiom' N P). 

N  /  . 
r,4i—>A,A!,A    (g)  T,Ai,A—+AuA      =>   r,Ai—>AX,A 
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cal_andr'   : 
ca>  A  ([p]  andr'   (Dl p)   (D2 p)  P)  E  (andr'  Fl F2 P) 

<-  ({pl:pos Bl} ca'  A  ([p]  Di p pi)  E (Fl pi)) 
<-  ({p2:pos B2} ca'  A  ([p]  D2 p p2)  E (F2 p2)). 

N3                                              N 
T—>A2,A1,{A2AA),A           T —> A,Alt [A2 A A), A 
 AR iVi 

r—+ AU(A2AA),A <g>    T,A1—>{A2AA),A 

N4 N2 

r—+ A2,(A2AA),A T-^A,{A2AA),A 
 AR 

=>■ T—>(A2AA),A 

N3 Ni Ni 
r—► Al ,A2,(A2 A A), A    <g>    T,A1—>A2,{A2AA),A =>     T-^A2,(A2AA),A 

N Ni N2 

r—+AX,A,{A2AA),A    ®    T,A1-^A,{A2AA),A =>     r —» A, {A2 A A), A 

cal_andll'   : 
ca'  A  ([p]  andll'   (Dl p) N)  E  (andll'  Fl N) 

<-  (-Cnlineg Bl} ca'  A  ([p]  Dl p nl)  E  (Fl nl)). 

N N2 

T,(AAA2),A-^Ai,A A. T,{AAA2),A-^A 
-Ali ^i Aii 

T,(AAA2)—>A1,A ®     T,{AAA2),A1—^A     =»       T,(AAA2)-+A 

N Ni N2 

T,(AAA2),A-^AUA    <g)    r,(AAA2M,4i-^A     =>     T, (A A A2), A —» A 

cal_andl2'   : 
ca'  A ([p]   andl2'   (D2 p) N)  E (andl2'  F2 N) 

<-  ({n2:neg B2} ca'  A  (Cp]  D2 p n2)  E  (F2 n2)). 

N N2 
T,(A2AA),A^Ai,A                                    Ar T,{A2AA),A—>A 

-AL2 
Nl  ; :—AI2 

T,(A2AA)-+A1,A <g)     T,{A2AA),AX^A     =>       T,(A2AA)—+A 

N Nx N2 

T,{A2AA),A—>Ai,A    <g)    r, {A2 A A), A,At —» A     =►     r, (A2 A A),A —> A 
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cal_impr'   : 
ca'  A  ([p]   impr'   (Dl p)  P)  E  (impr'  Fl P) 

<-  (-[nlineg Bi> -Cp2:pos B2> 
ca'  A  ([p]  Dl p ni p2)  E  (Fi nl p2)). 

N N2 

T,A^A1,A2,(ADA1),A T,A—>A1,(ApA1),A 
_DR 7VJ  . — DR 

T—tA^iADA^A <g)    T,A2-^{ADA1),A     => T^(ADA,),A 

N Nx N2 

T,A-^ A2,Ai,{ADAi),A    <g>    T,A,A2—>A1,(ADA1),A     =»     T, A —» Alt {A D Ar), A 

cal_impl'   : 
ca'  A  ([p]   impl'   (Di p)   (D2 p) N)  E (impl'  Fi F2 N) 

<-  ({pl:pos Bl> ca'  A  ([p]  Dl p pi)  E  (Fl pi)) 
<-  (-Cn2:neg B2> ca'  A  ([p]  D2 p n2)  E  (F2 n2)). 

N3 N 
r,(A2DA)—>A2,AlfA T,(A2DA),A—^A1,A   ^ ^ 

DL 
T,(A2DA)^A1,A (g>    T,(A2DA),Ai—*A 

N4 N2 

T, (A2 D A)^A2,A T,(A2DA),A-^A 

r, (A2 DA)-^A 
DL 

N3 Ni N4 

r,{A2DA)-+A1,A2,A (g)    T,(A2DA),Ai-^A2,A =»     r, {A2 D A) —> A2, A 

N Ni N2 

T,(A2DA),A^Ai,A <g>    r, (A2 DA), A,AX —+ A =»     r, (A2 D A),A —> A 

cal_orrl'   : 
ca»  A  ([p]   orrl'   (Dl p)  P)  E  (orrl'  Fl P) 

<-  (-[pl:pos Bl> ca'  A  ([p]  Dl p pi)  E  (Fl pi)). 

TV #2 
T^A,Ai,(AVA2),A T-^A,(AVA2),A 

•V-Ri :        ^ ~~Z 71—7~T^—     1 

T—>Ai,{AVA2),A (g>    T,A1—>(AVA2),&     =>       T^(AVA2),A 

N Ni N2 

T^AUA,(AVA2),A    <g)    T,Ai—>A,(AvA2),A     =>     T—> A,(AV A2),A 
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cal_orr2'   : 
ca'  A  ([p]   orr2'   (D2 p)  P) E  (orr2'  F2 P) 

<-  ({p2:pos B2} ca'  A  ([p]  D2 p p2)  E  (F2 p2)). 

N N2 

r—>A,Alt{A2VA),A Ar T—>A,(A2VA),A 
■ VÄ2 ^i .    Vf?2 

r—+Au(A2VA),&. ®    T,A1—>{A2VA),A     =►       r—>{A2VA),A 

N Ni N2 

T—*Ai,A,{A2VA),A    <g>    T,A1^A,(A2VA),A     =»     r —*■ A, {A2 V A), A 

cal_orl'   : 
ca'  A (Cp]   orl'   (Dl p) (D2 p) N)  E  (orl'  Fi F2 N) 

<-  ({ni:neg Bl} ca' A  (Cp] Di p ni)  E (Fi nl)) 
<-  ({n2:neg B2} ca' A  (Cp] D2 p n2)  E  (F2 n2)). 

N3 N 
r,(AiVA),A2—>A1,A T,{A2VA),A-^AUA 

VL Ni 
T,{A3VA)—>A1,A <g)    T,{A2VA),Ai—+A 

N4 N2 
T,{A2VA),A2—>A T,(A2VA),A^A 

 VL 
=*■ r, {A2 V A) —> A 

N3 Ni N4 

T,{A2VA),A2-^A1,A    <g)    T,(A2VA),A2,Ax^A =>     r, {A2 V A), A2 —> A 

TV JVi N2 

r,(A2VA),A—>AuA    <g)    r,(A2VA),A,A1—>A =>     T, {A2 V A), A —► A 

cal_notr'   : 
ca'  A  ([p]  notr'   (Di p)  P)  E  (notr' FI P) 

<-  ({ni:neg Bi} ca'  A  (Cp]  Di p nl)  E (Fi nl)). 

N N2 

r,A—>,4I,-(A),A ^ r,A—>-.(A),A 
--,Ä Ni <R 

r—>A1;-(A),A 0    T,A1—^^(A),A     =►       r—*-.(i4),A 

TV JVi AT2 

T,A—+AI,-.(X),A   (g)   r.AAi—>-.(^),A   =>   r,A—>-(A),A 
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cal_notl'   : 
ca'  A  ([p]   notl'   (Dl p) N)  E  (notl'  Fl N) 

<- (-Cpiipos Bi} ca' A ([p] Dl p pi) E (Fl pi)). 

N N2 

r,^(A)—>A,AuA AT T,->(A)-+A,A 

r,-.(i4)-+^i,A <g>   T^(A),A1—^A   =>     r,-.(4)—»A 

N Nx N2 

T,-,(A)—>AUA,A    <g)    T,^(A),A1—>A,A     =>     T,^{A)-+A,A 

cal_truer'   : 
ca'  A  ([p]  truer'  P)  E  (truer'  P), 

■TR N  TR 
r—>A,T,A <g)    r,,4—+T,A    =>  r—>-T,A 

cal_falsel'   : 
ca'  A  ([p]  falsel'  N)  E  (falsel'  N). 

TV ±L "  -LL 
T,±—>A,A <g>    T,±,A—>A     =>   I\±—s-A 

cal_forallr'   : 
ca'  A  ([p]  forallr'   (Dl p) P)  E  (forallr' Fl P) 

<-  ({a:i} -Cplcpos  (Bl a)} 
ca'  A ([p]  Dl p a pi)  E  (Fl a pi)). 

Nu! N^i 
T—+Aa1,A1,Nx.Ax),A KT T —► Aalt (Vs. Ax), A 

-VÄ01 ■/Vl  : V-Rai 

T—tAufyx.Ax),*. <g>    T,A! —>(Vx.Ax),A     =» r—>{Vx.Ax),A 

Na Ni N2a 
T—*Ai,Aa,(Vx.Ax),A    <g>     T,A1-^Aa,(\/x.Ax),A     =*■     r —■» 4a, (Vs. Az), A 

cal.foralll'   : 
ca'  A  ([p]  foralll'  T  (Dl p)  N)  E  (foralll' T Fl N) 

<-  ({nl} ca'  A  (Cp3  Dl p nl)  E  (Fl nl)). 
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N N2 

T,Nx.Ax),M—¥Au& Rr T,(Vx.Ax),At—>A 
-VL Ni  VL 

T,(Vx.Ax)—>Ai,& <g>    r,(Vx.i4ar),i4i—>A     =»        r, (V*. Ac) —> A 

N - Ni N2 

T,{Vx.Ax),At —>AUA    <g)    r,(Vx.^x),i«,i4i—*A     =>     r, (Var. Ax), Ai —► A 

cal_existsr'   : 
ca'  A  ([p]   existsr' T  (Dl p)  P) E  (existsr' T Fi P) 

<-  ({pi} ca'  A  (Cp]  Dl p pi)  E  (Fl pi)). 

N N2 

T—*At,Ai,{3x.Ax),A Ar r —*• At, {3x. Ax), A 
■3R Nl ———:—3R 

T-^Au{3x.Ax),A <g)    r,Ai—>(3x.Ax),A     =>       T —»• (3*. Ax), A 

N Nx N2 

T-^A1,At,{3x.Ax),A    <g>    T,A1-^At,(3x.Ax),A    =>■     T —»• At, {3x. Ax), A 

cal_existsl'   : 
ca'  A  (Cp]   existsl'   (Dl p) N)  E  (existsl' Fl N) 

<- ({a:i} {nl:neg (Bl a)} 
ca'  A (Cp] Dl p a ni) E (Fl a ni)). 

Nax N2ax 

T,{3x. Ax),Acn —*Ai,A T,(3x.Ax),Aai—>A 

T,(3x.Ax)—>A1,A <g)    T,(3x.Ax),A1-^A     => T, {3x. Ax) —► A 

Na Ni N2a 
T,(3x.Ax),Aa—*Ai,A    <g>    r, (3s. Ax), Aa, Ax —*■ A     =►     T,{3x. Ax), Aa —> A 

B    Cut Elimination 

In this appendix we define intuitionistic and classical sequent calculi with a primitive rule of cut and 
show that they can be translated to cut-free derivations. In both cases the proof is a straightforward 
induction on the structure of derivations, taking advantage of admissibility of cut in the cut-free 

system. 
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B.l    Intuitionistic Calculus 

We use T —►+ C for sequents in the system G£ with cut which is obtained by adding 

r —>+ A       T,A —»+ C 
 - — Cut 

T—>+C 

to the rules of the cut-free system G3. With proof terms this rule reads 

r —>+ d : A       r, h:A —¥ + e : C 

T —>+ cut d (Xh:A. e) : C 
•Cut. 

In order to represent derivations in G3 we introduce another judgment, cone* A, rename all 
the rules for the cut-free calculus and add 

cut* : {A:o} cone* A 
-> (hyp A -> cone* C) 
-> cone* C. 

The complete implementation is given below. Note that we do not need to rename the hypothesis 
judgment hyp, since hypothesis play the same role in both systems. The main lemmas concerning 
G^" such as weakening, contraction, substitution, and the adequacy of the encoding follow as before. 

cone*   :   o -> type. 

cut*   :   -[A:o} cone* A 
->  (hyp A -> cone* C) 
-> cone* C. 

axiom*  :   (hyp A -> cone* A). 

andr*     :   cone* A 
-> cone* B 
-> cone*  (A and B). 

andll*   :   (hyp A -> cone* C) 
->  (hyp  (A and B)  -> cone* C). 

andl2*   :   (hyp B -> cone* C) 
->  (hyp  (A and B)  -> cone* C). 

impr*     :   (hyp A -> cone* B) 
-> cone*  (A imp B). 

impl*    :  cone* A 
->  (hyp B -> cone* C) 
-> (hyp (A imp B) -> cone* C). 

orrl*     :   cone* A 
-> cone*  (A or B). 
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orr2*  : cone* B 
-> cone* (A or B). 

orl*  : (hyp A -> cone* C) 
-> (hyp B -> cone* C) 
-> (hyp (A or B) -> cone* C). 

notr*  : ({p:o} hyp A -> cone* p) 
-> cone* (not A). 

notl* : cone* A 
-> (hyp (not A) -> cone* C). 

truer* : cone* (true). 

falsel* : (hyp (false) -> cone* C). 

forallr* : ({a:i> cone* (A a)) 
-> cone* (forall A). 

foralll* : {T:i} (hyp (A T) -> cone* C) 
-> (hyp (forall A) -> cone* C). 

existsr* : {T:i} cone* (A T) 
-> cone* (exists A). 

existsl* : ({a:i> hyp (A a) -> cone* C) 
-> (hyp (exists A) -> cone* C). 

The theorem of cut elimination explicitly relates derivations in G3 to G3. 

Theorem 8 (Cut Elimination) IfV* :: (r —►+ d* : C) is a derivation in G$ then there exists 
a cut-free derivation V :: (T —)■ d : C) in G3. 

Proof: By structural induction on d. When the last inference R is not a cut we appeal to the 
induction hypothesis on the premise(s) of the last inference and combine the resulting cut-free 
derivation (s) with R. If the last inference is a cut we generate cut-free derivations of the premises 
by induction hypothesis and then use admissibility of cut to obtain a cut-free derivation for the 
conclusion. n 

This proof is implemented by a relation between sequent derivations in the system with cut and 
sequent derivations in the system without cut. We use the convention that variables whose name 
ends in a star (*) represent derivations that may contain cut. 

ce   :   cone* C -> cone C -> type. 

ce_cut       :   ce  (cut* A Dl* D2*) D 
<- ce Dl* Di 
<-  ({hi:hyp A} ce  (D2* hl)   (D2 hi)) 
<- ca A Dl D2 D. 



58 STRUCTURAL CUT ELIMINATION 

ce_axiom :  ce (axiom* H)   (axiom H). 

ce_andr    :   ce  (andr* Di* D2*)   (andr Dl D2) 
<- ce Dl* Dl 
<- ce D2* D2. 

ce_andll  :  ce (andll* Dl* H)   (andll Dl H) 
<- ({hi:hyp A> ce  (Di* hl)   (Di hi)). 

ce_andl2 : ce (andl2* D2* H) (andl2 D2 H) 
<- ({h2:hyp B} ce (D2* h2) (D2 h2)). 

ce_impr : ce (impr* Dl*) (impr Dl) 
<- «hi:hyp A} ce (Dl* hi) (Dl hi)). 

ce_impl : ce (impl* Dl* D2* H) (impl Dl D2 H) 
<- ce Dl* Dl 
<- (-Ch2:hyp B> ce (D2* h2) (D2 h2)). 

ce_orrl  : ce (orrl* Dl*) (orrl Dl) 
<- ce Dl* Dl. 

ce_orr2 : ce (orr2* D2*) (orr2 D2) 
<- ce D2* D2. 

ce_orl  : ce (orl* Dl* D2* H) (orl Di D2 H) 
<- (-Chl:hyp A} ce (Dl* hi) (Dl hi)) 
<- «h2:hyp B> ce (D2* h2) (D2 h2)). 

ce_notr : ce (notr* Dl*) (notr Di) 
<- (-Cp:o> -Chlrhyp A} ce (Dl* p hl) (Dl p hi)). 

ce_notl : ce (notl* Dl* H) (notl Di H) 
<- ce Dl* Di. 

ce_truer : ce (truer*) (truer). 

ce.falsel : ce (falsel* H) (falsel H). 

ce.forallr : ce (forallr* Dl*) (forallr Dl) 
<- {a:i> ce (Dl* a) (Dl a). 

ce.foralll : ce (foralll* T Dl* H) (foralll T Dl H) 
<- (-Chi} ce (Di* hi) (Dl hi)). 

ce_existsr : ce (existsr* T Di*) (existsr T Dl) 
<- ce Di* Dl. 

ce.existsl : ce (existsl* Dl* H) (existsl Dl H) 
<- ({a:i} {hl:hyp (Al a)} ce (Dl* a hi) (Dl a hi)), 
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B.2    Classical Calculus 

We write T —>+ A for a sequent in the classical system with cut as a primitive rule of inference. 
It is obtained by adding 

r—>+A,A     r,A—»+A 
 — Cut 

r—>+ A 

to the other rules of inference. With proof terms we have 

T^+p:A,A       T,n:A-^+A 
 — Cut 

„ cut (\v:A. d) (\n:A. e)       . 
r        —■¥       + A 

This system continues to satisfy weakening, contraction, and substitution lemmas. The sig- 
nature below specifies an adequate encoding of this extended calculus in LF. We need a new 
judgment S that replaces # as the type of proof terms in the representation. We systematically 
copy all declarations from the cut-free system (appending " to their name) and add the cut rule as 
cut". 

C : type. 

cut" : (pos A -> 0) 
-> (neg A -> 0) 
-> 0. 

axiom" : (neg A -> pos A -> «) 

andr" : (pos A -> 0) 
-> (pos B -> «) 
-> (pos (A and B) -> C). 

andll"  :   (neg A -> C) 
->  (neg  (A and B)  -> C). 

andl2"   :   (neg B -> 0) 
->  (neg  (A and B)  -> «). 

impr"    :   (neg A -> pos B -> 0) 
->  (pos  (A imp B)  -> C). 

impl"     :   (pos A -> 0) 
->  (neg B -> C) 
->  (neg  (A imp B)  -> C). 

orrl"     :   (pos A -> C) 
->  (pos  (A or B)  -> 6). 

orr2"     :   (pos B -> 0) 
->  (pos  (A or B)  -> fi). 

orl"       :   (neg A -> C) 
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-> (neg B -> C) 
-> (neg (A or B) -> C). 

notr"  : (neg A -> C) 
-> (pos (not A) -> C). 

notl"  : (pos A -> C) 
-> (neg (not A) -> C). 

truer" : (pos (true) -> 0). 

falsel" : (neg (false) -> 0). 

forallr" : (<a:i> pos (A a) -> «) 
-> (pos (forall A) -> «). 

foralll" : {T:i> (neg (A T) -> C) 
-> (neg (forall A) -> 6). 

existsr" : {T:i} (pos (A T) -> 0) 
-> (pos (exists A) -> C). 

existsl" : «a:i} neg (A a) -> C) 
-> (neg (exists A) -> C). 

Cut elimination follows by a simple structural induction from the admissibility of cut in the 
cut-free system. We present here only the Elf code implementing this proof. 

Theorem 9 (Classical Cut Elimination) Let V :: (T -^-+ A) be a classical sequent derivation 

possibly containing cut. Then there exists a cut-free derivation V :: (T —> A) 

Proof: By structural induction on d. For each inference rule except cut we apply the induction 
hypothesis to the premises and then reconstruct a cut-free derivation with the same inference rule. 
In the case of cut, we appeal to the induction hypothesis and then to admissibility of cut on the 
resulting two cut-free derivations. D 

This proof is implementated as a type family relating derivations with cut to cut-free derivations. 
Note how the appeal to admissibility in the case of a cut is implemented as a call to ca'. 

ce'   :  ©->#-> type. 

ce_cut'     :   ce'   (cut" D E)  F 
<- (-Cprpos A} ce' (D p) (D' p)) 
<- ({n:neg A> ce' (E n) (E' n)) 
<- ca'  A D'  E'  F. 

ce_axiom':   ce'   (axiom" N P)   (axiom'  N P). 

ce.andr'   :   ce'   (andr" Dl D2 P)   (andr' Dl'  D2'  P) 
<-   ({pl> ce'   (Dl pi)   (Di'  pi)) 
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<- ({p2} ce' (D2 p2) (D2' p2)). 

ce_andll': ce' ( 
<- ( 

ce_andl2': ce' ( 

<- ( 

ce_impr' : ce' ( 

<- ( 

ce_impl' : ce' ( 
<- ( 
<- ( 

ce_orrl' : ce' ( 
<- ( 

ce_orr2' : ce' ( 

<- ( 

ce_orl'  : ce' ( 

<- ( 
<- ( 

ce_notr' : ce' ( 
<- ( 

ce_norl' : ce' ( 
<- ( 

andll* Nl N) (andli' Nl' N) 
{nl} ce' (Nl nl) (Nl' nl)). 

andl2" N2 N) (andl2> N2' N) 
{n2} ce' (N2 n2) (N2' n2)). 

impr* Dl P) (impr' Dl' P) 
{ni}{p2} ce' (Dl nl p2) (Dl' nl p2)). 

impl" Dl D2 N) (impl' Dl' D2' N) 
{pi} ce' (Dl pi) (Dl' pi)) 
{n2} ce' (D2 n2) (D2' n2)). 

orrl* Dl P) (orrl' Dl' P) 
{pi} ce' (Dl pi) (Dl' pi)). 

orr2* D2 P) (orr2> D2' P) 
{p2} ce' (D2 p2) (D2' p2)). 

orl* Dl D2 N) (orl' Dl' D2' N) 
{nl} ce' (Dl nl) (Dl' nl)) 
■Cn2> ce' (D2 n2) (D2' n2)). 

notr* Dl P) (notr' Dl' P) 
{nl} ce' (Dl nl) (Dl' nl)). 

notl" Dl N) (notl' Dl' N) 
■Cpl} ce' (Dl pi) (Dl' pi)). 

ce_truer': ce' (truer* P) (truer' P). 

ce_falsel': ce' (falsel" N) (falsel' N). 

ce_forallr': ce' (forallr* Dl P) (forallr' Dl' P) 
<- (-[a:i} {pl:pos (Al a)} ce' (Dl a pi) (Dl' a pi)). 

ce_foralll': ce' (foralll' T Dl N) (foralll' T Dl' N) 
<- ({nl} ce' (Dl nl) (Dl' nl)). 

ce_existsr': ce' (existsr* T Dl P) (existsr' T Dl' P) 
<- ({pi} ce' (Dl pi) (Dl' pi)). 

ce_existsl': ce' (existsl" Dl N) (existsl' Dl' N) 
<- ({a:i} {nlrneg (Al a)} ce' (Dl a nl) (Dl' a nl)). 
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